• Title/Summary/Keyword: Immunomodulatory therapy

Search Result 51, Processing Time 0.026 seconds

Mechanisms of immune tolerance to allergens in children

  • Kucuksezer, Umut C.;Ozdemir, Cevdet;Akdis, Mubeccel;Akdis, Cezmi A.
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.12
    • /
    • pp.505-513
    • /
    • 2013
  • Because the prevalence of allergic diseases has significantly increased in recent years, understanding the causes and mechanisms of these disorders is of high importance, and intense investigations are ongoing. Current knowledge pinpoints immune tolerance mechanisms as indispensable for healthy immune response to allergens in daily life. It is evident that development and maintenance of allergen-specific T cell tolerance is of vital importance for a healthy immune response to allergens. Such tolerance can be gained spontaneously by dose-dependent exposures to allergens in nature or by allergen-specific immunotherapy. Allergen-specific immunotherapy induces regulatory T cells with the capacity to secrete interleukin-10 and transforming growth factor-${\beta}$, limits activation of effector cells of allergic inflammation (such as mast cells and basophils), and switches antibody isotype from IgE to the noninflammatory type IgG4. Although allergen-specific immunotherapy is the only method of tolerance induction in allergic individuals, several factors, such as long duration of treatment, compliance problems, and life-threatening side effects, have limited widespread applicability of this immunomodulatory treatment. To overcome these limitations, current research focuses on the introduction of allergens in more efficient and safer ways. Defining the endotypes and phenotypes of allergic diseases might provide the ability to select ideal patients, and novel biomarkers might ensure new custom-tailored therapy modalities.

The Role of Korean Medicine for Treatment and Management for Lung Cancer (폐암 환자의 치료 및 관리에서 한의학적 치료의 역할)

  • Jung, Hyun-Jung;Kim, Jong-Dae
    • Journal of Korean Traditional Oncology
    • /
    • v.20 no.1
    • /
    • pp.45-54
    • /
    • 2015
  • Objectives : Lung cancer is the leading cause of death in cancer patients. Many studies reflect the growing application of integrative korean and western medicine for lung cancer, but its efficacy remains largely unexplored. The purpose of this study is to show that the role of Korean medicine for treatment and manage for lung cancer patients. Methods : In the present study, we searched all the clinical studies of Korean Medical therapies for lung cancer by electronic and manual searching in two databases including MEDLINE, OASIS. Results : Our study showed that acupuncture has strong immunomodulatory effect. Further analysis revealed that acupuncture and herb medicine alleviate the conventional therapy-induced bone marrow supression in lung cancer patients, as well as desease nausea and vomiting. In this study, we showed that acupuncture and herb medicine can improve immediate tumor response, quality of life of lung cancer patients. Conclusions : Korean medicine including that acupuncture and herb medicine is found to be effective in lung cancer treatment and management.

Biotoxins for Cancer Therapy

  • Liu, Cui-Cui;Yang, Hao;Zhang, Ling-Ling;Zhang, Qian;Chen, Bo;Wang, Yi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.4753-4758
    • /
    • 2014
  • In recent times, a number of studies have provided evidence that biotoxins present great potential as antitumor agents, such as snake venom, bee venom, some bacteria toxins and plant toxins, and thus could be used as chemotherapeutic agents against tumors. The biodiversity of venoms and toxins make them a unique source from which novel anticancer agent may be developed. Biotoxins, also known as natural toxins, include toxic substances produced by plants, animals and microorganisms. Here, we systematically list representative biological toxins that have antitumor properties, involving animal toxins, plant toxins, mycotoxins as well as bacterial toxins. In this review, we summarize the current knowledge involving biotoxins and the active compounds that have anti-cancer activity to induce cytotoxic, antitumor, immunomodulatory, and apoptotic effects in different tumor cells in vivo or in vitro. We also show insights into the molecular and functional evolution of biotoxins.

Effect Inosiplex on Cellular and Humoral Immune Response (Inosiplex가 세포성(細胞性) 및 체액성면역반응(體液性免疫反應)에 미치는 영향(影響))

  • Ha, Tai-You;Lee, Hern-Ku
    • The Journal of the Korean Society for Microbiology
    • /
    • v.16 no.1
    • /
    • pp.57-64
    • /
    • 1981
  • The clinical need for agents to modify immune response in the treatment of viral infection has lead to an increased interest in cellular and biochemical mechanisms regulating the immune response and to the development of a variety of biological and chemical substance with immunomodulatory activity. Inosiplex has shown antiviral activity in tissue culture, animal models and huamn studies through augmentation of immune response. However, the effect of inosiplex on immune response in animal has not been extensively analyzed, and the effect of inosiplex on immune response has been paradoxical depending on the time of administration of inosiplex in relation to that of antigen. Therefore, this study was undertaken to assess the effect of inosiplex on the immune response to sheep red blood cells(SRBC) in normal and viral infected mice. Inosiplex increased cellular immune response and plaque forming lymphocyte response to SRBC, decreased the recovery of S. typhimurium from infected mice spleen, and restored the depressed cellular immune response by measle and newcastle disease virus infections. All of the above results were observed only when inosiplex was given after immunization but did not when given before immunization. These results indicate that inosiplex stimulate the efferent are of immune response and may even block the afferent are, and suggest that inosiplex is a very promising drug in therapy of many viral infections.

  • PDF

Thyroid disturbances in children treated with combined pegylated interferon-alpha and ribavirin for chronic hepatitis C

  • Rashed, Yasser K.;Khalaf, Fatma A.;Kotb, Sobhy E.
    • Clinical and Experimental Pediatrics
    • /
    • v.63 no.2
    • /
    • pp.52-55
    • /
    • 2020
  • Background: Immunomodulatory properties of interferon (IFN) have been documented. It may induce autoimmune diseases such as autoimmune thyroiditis with hypo- or hyperthyroidism. In addition, it may impair thyroid hormone synthesis through affecting iodide organification in thyroid gland. Purpose: The aim of this study was to describe thyroid function tests disturbances in children with chronic hepatitis C (CHC) receiving pegylated interferon-alpha (PEG IFN-α) plus ribavirin. Methods: Fifty children with CHC virus infection who received combined pegylated interferon-alpha with ribavirin were selected. Other 50 apparently healthy children of matched age and sex (considered as control group) were selected. All children (100) were subject to liver function tests, virological studies, and follow-up of thyroid function test during and after the treatment course. Results: Our study showed that 28% of children received combined PEG IFN-α plus ribavirin showed subclinical hypothyroidism. After 24 weeks treatment with combined therapy of IFN plus ribavirin, the mean level of thyroid stimulating hormone (TSH) was 3.23±88 mU/mL, while TSH was 1.16±0.77 mU/mL before starting treatment. On the other hand, mean TSH was 1.09±0.92 mU/mL in normal control group. Conclusion: This study revealed an association between subclinical thyroid dysfunction and treatment with IFN-alpha and ribavirin in children. Further studies on larger number of patients and longer follow-up duration are recommended for further confirmation.

Metformin Suppresses MHC-Restricted Antigen Presentation by Inhibiting Co-Stimulatory Factors and MHC Molecules in APCs

  • Shin, Seulmee;Hyun, Bobae;Lee, Aeri;Kong, Hyunseok;Han, Shinha;Lee, Chong-Kil;Ha, Nam-Joo;Kim, Kyungjae
    • Biomolecules & Therapeutics
    • /
    • v.21 no.1
    • /
    • pp.35-41
    • /
    • 2013
  • Metformin is widely used for T2D therapy but its cellular mechanism of action is undefined. Recent studies on the mechanism of metformin in T2D have demonstrated involvement of the immune system. Current immunotherapies focus on the potential of immunomodulatory strategies for the treatment of T2D. In this study, we examined the effects of metformin on the antigen-presenting function of antigen-presenting cells (APCs). Metformin decreased both MHC class I and class II-restricted presentation of OVA and suppressed the expression of both MHC molecules and co-stimulatory factors such as CD54, CD80, and CD86 in DCs, but did not affect the phagocytic activity toward exogenous OVA. The class II-restricted OVA presentation-regulating activity of metformin was also confirmed using mice that had been injected with metformin followed by soluble OVA. These results provide an understanding of the mechanisms of the T cell response-regulating activity of metformin through the inhibition of MHC-restricted antigen presentation in relation to its actions on APCs.

Adaptogenic effects of Panax ginseng on modulation of cardiovascular functions

  • Irfan, Muhammad;Kwak, Yi-Seong;Han, Chang-Kyun;Hyun, Sun Hee;Rhee, Man Hee
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.538-543
    • /
    • 2020
  • Cardiovascular diseases are a rapidly growing epidemic with high morbidity and mortality. There is an urgent need to develop nutraceutical-based therapy with minimum side effects to reduce cardiovascular risk. Panax ginseng occupies a prominent status in herbal medicine for its various therapeutic effects against inflammation, allergy, diabetes, cardiovascular diseases, and even cancer, with positive, beneficial, and restorative effects. The active components found in most P. ginseng varieties are known to include ginsenosides, polysaccharides, peptides, alkaloids, polyacetylene, and phenolic compounds, which are considered to be the main pharmacologically active constituents in ginseng. P. ginseng is an adaptogen. That is, it supports living organisms to maintain optimal homeostasis by exerting effects that counteract physiological changes caused by physical, chemical, or biological stressors. P. ginseng possesses immunomodulatory (including both immunostimulatory and immunosuppressive), neuromodulatory, and cardioprotective effects; suppresses anxiety; and balances vascular tone. P. ginseng has an antihypertensive effect that has been explained by its vasorelaxant action, and paradoxically, it is also known to increase blood pressure by vasoconstriction and help maintain cardiovascular health. Here, we discuss the potential adaptogenic effects of P. ginseng on the cardiovascular system and outline a future research perspective in this area.

Challenges of stem cell therapies in companion animal practice

  • Kang, Min-Hee;Park, Hee-Myung
    • Journal of Veterinary Science
    • /
    • v.21 no.3
    • /
    • pp.42.1-42.22
    • /
    • 2020
  • Regenerative medicine using stem cells from various sources are emerging treatment modality in several refractory diseases in veterinary medicine. It is well-known that stem cells can differentiate into specific cell types, self-renew, and regenerate. In addition, the unique immunomodulatory effects of stem cells have made stem cell transplantation a promising option for treating a wide range of disease and injuries. Recently, the medical demands for companion animals have been rapidly increasing, and certain disease conditions require alternative treatment options. In this review, we focused on stem cell application research in companion animals including experimental models, case reports and clinical trials in dogs and cats. The clinical studies and therapeutic protocols were categorized, evaluated and summarized according to the organ systems involved. The results indicate that evidence for the effectiveness of cell-based treatment in specific diseases or organ systems is not yet conclusive. Nonetheless, stem cell therapy may be a realistic treatment option in the near future, therefore, considerable efforts are needed to find optimized cell sources, cell numbers and delivery methods in order to standardize treatment methods and evaluation processes.

Molecular Characterization of Neurally Differentiated Human Bone Marrow-derived Clonal Mesenchymal Stem Cells

  • Yi, TacGhee;Lee, Hyun-Joo;Cho, Yun-Kyoung;Jeon, Myung-Shin;Song, Sun U.
    • IMMUNE NETWORK
    • /
    • v.14 no.1
    • /
    • pp.54-65
    • /
    • 2014
  • Bone marrow-derived mesenchymal stem cells (MSCs) are multipotent, with the ability to differentiate into different cell types. Additionally, the immunomodulatory activity of MSCs can downregulate inflammatory responses. The use of MSCs to repair injured tissues and treat inflammation, including in neuroimmune diseases, has been extensively explored. Although MSCs have emerged as a promising resource for the treatment of neuroimmune diseases, attempts to define the molecular properties of MSCs have been limited by the heterogeneity of MSC populations. We recently developed a new method, the subfractionation culturing method, to isolate homogeneous human clonal MSCs (hcMSCs). The hcMSCs were able to differentiate into fat, cartilage, bone, neuroglia, and liver cell types. In this study, to better understand the properties of neurally differentiated MSCs, gene expression in highly homogeneous hcMSCs was analyzed. Neural differentiation of hcMSCs was induced for 14 days. Thereafter, RNA and genomic DNA was isolated and subjected to microarray analysis and DNA methylation array analysis, respectively. We correlated the transcriptome of hcMSCs during neural differentiation with the DNA methylation status. Here, we describe and discuss the gene expression profile of neurally differentiated hcMSCs. These findings will expand our understanding of the molecular properties of MSCs and contribute to the development of cell therapy for neuroimmune diseases.

Immunogenic Cell Death Induced by Ginsenoside Rg3: Significance in Dendritic Cell-based Anti-tumor Immunotherapy

  • Keum-joo Son;Ki ryung Choi;Seog Jae Lee;Hyunah Lee
    • IMMUNE NETWORK
    • /
    • v.16 no.1
    • /
    • pp.75-84
    • /
    • 2016
  • Cancer is one of the leading causes of morbidity and mortality worldwide; therefore there is a need to discover new therapeutic modules with improved efficacy and safety. Immune-(cell) therapy is a promising therapeutic strategy for the treatment of intractable cancers. The effectiveness of certain chemotherapeutics in inducing immunogenic tumor cell death thus promoting cancer eradication has been reported. Ginsenoside Rg3 is a ginseng saponin that has antitumor and immunomodulatory activity. In this study, we treated tumor cells with Rg3 to verify the significance of inducing immunogenic tumor cell death in antitumor therapy, especially in DC-based immunotherapy. Rg3 killed the both immunogenic (B16F10 melanoma cells) and non-immunogenic (LLC: Lewis Lung Carcinoma cells) tumor cells by inducing apoptosis. Surface expression of immunogenic death markers including calreticulin and heat shock proteins and the transcription of relevant genes were increased in the Rg3-dying tumor. Increased calreticulin expression was directly related to the uptake of dying tumor cells by dendritic cells (DCs): the proportion of CRT+CD11c+cells was increased in the Rg3-treated group. Interestingly, tumor cells dying by immunogenic cell death secreted IFN-γ, an effector molecule for antitumor activity in T cells. Along with the Rg3-induced suppression of pro-angiogenic (TNF-α) and immunosuppressive cytokine (TGF-β) secretion, IFN-γ production from the Rg3-treated tumor cells may also indicate Rg3 as an effective anticancer immunotherapeutic strategy. The data clearly suggests that Rg3-induced immunogenic tumor cell death due its cytotoxic effect and its ability to induce DC function. This indicates that Rg3 may be an effective immunotherapeutic strategy.