• Title/Summary/Keyword: Immunomodulatory effect

Search Result 276, Processing Time 0.026 seconds

Lipoteichoic Acid Suppresses Effector T Cells Induced by Staphylococcus aureus-Pulsed Dendritic Cells

  • Son, Young Min;Song, Ki-Duk;Park, Sung-Moo;Han, Seung Hyun;Yun, Cheol-Heui
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.1023-1030
    • /
    • 2013
  • Lipoteichoic acid (LTA), uniquely expressed on gram-positive bacteria, is recognized by Toll-like receptor 2 (TLR2) on not only antigen-presenting cells but also activated T cells. Therefore, it is reasonable to assume that LTA is acting on T cells. However, little is known about the effect of LTA on T-cell regulation. In the present study, we investigated the immunomodulatory effects of LTA on $CD4^+$ T cells. Effector $CD4^+$ T cells, induced after co-culture with S. aureus-pulsed dendritic cells, produced high levels of interferon-${\gamma}$, CD25, CD69, and TLRs 2 and 4. When effector $CD4^+$ T cells were treated with LTA, the expressions of the membrane-bound form of transforming growth factor (TGF)-${\beta}$ and forkhead box P3 increased. Coincidently, the proliferation of effector $CD4^+$ T cells was declined after LTA treatment. When TGF-${\beta}$ signaling was blocked by the TGF-${\beta}$ receptor 1 kinase inhibitor, LTA failed to suppress the proliferation of effector $CD4^+$ T cells. Therefore, the present results suggest that LTA suppresses the activity of effector $CD4^+$ T cells by enhancing TGF-${\beta}$ production.

Inhibition of TNF-α-mediated NF-κB Transcriptional Activity in HepG2 Cells by Dammarane-type Saponins from Panax ginseng Leaves

  • Song, Seok-Bean;Tung, Nguyen Huu;Quang, Tran Hong;Ngan, Nguyen Thi Thanh;Kim, Kyoon-Eon;Kim, Young-Ho
    • Journal of Ginseng Research
    • /
    • v.36 no.2
    • /
    • pp.146-152
    • /
    • 2012
  • Panax ginseng (PG) is a globally utilized medicinal herb. The medicinal effects of PG are primarily attributable to ginsenosides located in the root and leaf. The leaves of PG are known to be rich in various bioactive ginsenosides, and the therapeutic effects of ginseng extract and ginsenosides have been associated with immunomodulatory and anti-inflammatory activities. We examined the effect of PG leaf extract and the isolated ginsenosides, on nuclear factor (NF)-${\kappa}B$transcriptional activity and target gene expression by applying a luciferase assay and reverse transcription polymerase chain reaction in tumor necrosis factor (TNF)-${\alpha}$-treated hepatocarcinoma HepG2 cells. Air-dried PG leaf extract inhibited TNF-${\alpha}$-induced NF-${\kappa}B$transcription activity and NF-${\kappa}B$-dependent cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) gene expression more efficiently than the steamed extract. Of the 10 ginsenosides isolated from PG leaves, Rd and Km most significantly inhibited activity in a dose-dependent manner, with $IC_{50}$ values of $12.05{\pm}0.82$ and $8.84{\pm}0.99\;{\mu}M$, respectively. Furthermore, the ginsenosides Rd and Km inhibited the TNF-${\alpha}$-induced expression levels of the COX-2 and iNOS gene in HepG2 cells. Air-dried leaf extracts and their chemical components, ginsenoside Rd and Km, are involved in the suppression of TNF-${\alpha}$-induced NF-${\kappa}B$ activation and NF-${\kappa}B$-dependent iNOS and COX-2 gene expression. Consequently, air-dried leaf extract from PG, and the purified ginsenosides, have therapeutic potential as anti-inflammatory.

Gamma Irradiation Up-regulates Expression of B Cell Differentiation Molecule CD23 by NF-κB Activation

  • Rho, Hyun-Sook;Park, Soon-Suk;Lee, Choong-Eun
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.507-514
    • /
    • 2004
  • Gamma irradiation ($\gamma$-IR) is reported to have diverse effects on immune cell apoptosis, survival and differentiation. In the present study, the immunomodulatory effect of a low dose $\gamma$-IR (5~10 Gy) was investigated, focusing on the role of NF-${\kappa}B$ in the induction of the B cell differentiation molecule, CD23/FceRII. In the human B cell line Ramos, $\gamma$-IR not only induced CD23 expression, but also augmented the IL-4-induced surface CD23 levels. While $\gamma$-IR did not cause STAT6 activation in these cells, it did induce both DNA binding and the transcriptional activity of NF-${\kappa}B$ in the $I{\kappa}B$ degradation-dependent manner. It was subsequently found that different NF-${\kappa}B$ regulating signals modulated the $\gamma$-IR-or IL-4-induced CD23 expression. Inhibitors of NF-${\kappa}B$ activation, such as PDTC and MG132, suppressed the $\gamma$-IR-mediated CD23 expression. In contrast, Ras, which potentiates $\gamma$-IR-induced NF-${\kappa}B$ activity in these cells, further augmented the $\gamma$-IR- or IL-4-induced CD23 levels, The induction of NF-${\kappa}B$ activation and the subsequent up-regulation of CD23 expression by $\gamma$-IR were also observed in monocytic cells. These results suggest that $\gamma$-IR, at specific dosages, can modulate immune cell differentiation through the activation of NF-${\kappa}B$, and this potentially affects the immune inflammatory response that is mediated by cytokines.

Protective effect of wild ginseng cambial meristematic cells on ᴅ-galactosamine-induced hepatotoxicity in rats

  • Kim, Seok-Joo;Choi, Hyo-Sun;Cho, Hong-Ik;Jin, Young-Woo;Lee, Eun-Kyong;Ahn, Jeung Youb;Lee, Sun-Mee
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.376-383
    • /
    • 2015
  • Background: Panax ginseng has a wide range of biological activities including anti-inflammatory, antioxidant, and immunomodulatory functions. Wild ginseng cambial meristematic cells (CMCs) were obtained from P. ginseng cambium. This study examined the protective mechanism of wild ginseng CMCs against $\small{D}$-galactosamine (GalN)-induced liver injury. GalN, a well-known hepatotoxicant, causes severe hepatocellular inflammatory damage and clinical features similar to those of human viral hepatitis in experimental animals. Methods: Hepatotoxicity was induced in rats using GalN (700 mg/kg, i.p.). Wild ginseng CMCs was administered orally once a day for 2 wks, and then 2 h prior to and 6 h after GalN injection. Results: Wild ginseng CMCs attenuated the increase in serum aminotransferase activity that occurs 24 h after GalN injection. Wild ginseng CMCs also attenuated the GalN-induced increase in serum tumor necrosis factor-${\alpha}$, interleukin-6 level, and hepatic cyclooxygenase-2 protein and mRNA expression. Wild ginseng CMCs augmented the increase in serum interleukin -10 and hepatic heme oxygenase-1 protein and mRNA expression that was induced by GalN, inhibited the increase in the nuclear level of nuclear factor-kappa B, and enhanced the increase in NF-E2-related factor 2. Conclusion: Our findings suggest that wild ginseng CMCs protects liver against GalN-induced inflammation by suppressing proinflammatory mediators and enhancing production of anti-inflammatory mediators.

Immunomodulatory Effects of Fucoidan on NK Cells in Ovariectomized Rats

  • NamKoong, Seung;Kim, Ye-Jin;Kim, Tae-Seong;Sohn, Eun-Hwa
    • Korean Journal of Plant Resources
    • /
    • v.25 no.3
    • /
    • pp.317-322
    • /
    • 2012
  • In this study we investigated the effects of supplementation with fucoidan from brown alga on the function of natural-killer (NK) cells to evaluate the possibility as an immunomodulator in ovariectomized (OVX) rats. A total of 18 female Wistar rats (six weeks) were used this study and 12 rats were OVX, and the rest of rats were sham-operated. The sham and one OVX group were fed standard diet, and the remaining OVX group received fucoidan (0.05% supplemented diet). After 12 weeks of supplementation, rats were sacrificed to assess the tumoricidal activity of the NK cells and the NO-iNOS regulation from splenocytes. The mass of body and the immune organs such as spleen and thymus were also studied. In OVX rats, body and thymus weights increased, however fucoidan supplementation did not change the body mass and organs weight compared to OVX group. Fucoidan supplementation increased NK cell activity and reduced NO-iNOS production in OVX rats. Ex vivo treatment of fucoidan increased NK cell activity in splenocytes from shame and OVX rats. Ex vivo, we confirmed that fucoidan partially reduced the NK cell activity in the presence of iNOS inhibitors in OVX-splenocytes. These results indicate fucoidan supplementation has a NK cell tumoricidal activity, which are regulated by the iNOS production in OVX rats. This suggests that fucoidan is useful for potential therapeutic strategies as a nutrient in regulating the NK cells in postmenopausal osteoporosis patients.

Cordycepin Suppresses Expression of Diabetes Regulating Genes by Inhibition of Lipopolysaccharide-induced Inflammation in Macrophages

  • Shin, Seul-Mee;Lee, Sung-Won;Kwon, Jeong-Hak;Moon, Sun-Hee;Lee, Seung-Jeong;Lee, Chong-Kil;Cho, Kyung-Hae;Ha, Nam-Joo;Kim, Kyung-Jae
    • IMMUNE NETWORK
    • /
    • v.9 no.3
    • /
    • pp.98-105
    • /
    • 2009
  • Background: It has been recently noticed that type 2 diabetes (T2D), one of the most common metabolic diseases, causes a chronic low-grade inflammation and activation of the innate immune system that are closely involved in the pathogenesis of T2D. Cordyceps militaris, a traditional medicinal mushroom, produces a component compound, cordycepin (3'-deoxyadenosine). Cordycepin has been known to have many pharmacological activities including immunological stimulating, anti-cancer, and anti-infection activities. The molecular mechanisms of cordycepin in T2D are not clear. In the present study, we tested the role of cordycepin on the anti-diabetic effect and anti-inflammatory cascades in LPS-stimulated RAW 264.7 cells. Methods: We confirmed the levels of diabetes regulating genes mRNA and protein of cytokines through RT-PCR and western blot analysis and followed by FACS analysis for the surface molecules. Results: Cordycepin inhibited the production of NO and pro-inflammatory cytokines such as IL-$1{\beta}$, IL-6, and TNF-${\alpha}$ in LPS-activated macrophages via suppressing protein expression of pro-inflammatory mediators. T2D regulating genes such as $11{\beta}$-HSD1 and PPAR${\gamma}$ were decreased as well as expression of co-stimulatory molecules such as ICAM-1 and B7-1/-2 were also decreased with the increment of its concentration. In accordance with suppressed pro-inflammatory cytokine production lead to inhibition of diabetic regulating genes in activated macrophages. Cordycepin suppressed NF-${\kappa}B$ activation in LPS-activated macrophages. Conclusion: Based on these observations, cordycepin suppressed T2D regulating genes through the inactivation of NF-${\kappa}B$ dependent inflammatory responses and suggesting that cordycepin will provide potential use as an immunomodulatory agent for treating immunological diseases.

Exopolysaccharide-Overproducing Lactobacillus paracasei KB28 Induces Cytokines in Mouse Peritoneal Macrophages via Modulation of NF-${\kappa}B$ and MAPKs

  • Kang, Hee;Choi, Hye-Sun;Kim, Ji-Eun;Han, Nam-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.11
    • /
    • pp.1174-1178
    • /
    • 2011
  • Exopolysaccharides (EPSs) are microbial polysaccharides that are released outside of the bacterial cell wall. There have been few studies on EPS-producing lactic acid bacteria that can enhance macrophage activity and the underlying signaling mechanism for cytokine expression. In the current study, EPS-overproducing Lactobacillus (L.) paracasei KB28 was isolated from kimchi and cultivated in conditioned media containing glucose, sucrose, and lactose. The whole bacterial cells were obtained with their EPS being attached, and the cytokine-inducing activities of these cells were investigated. Gas chromatography analysis showed the presence of glucose, galactose, mannose, xylose, arabinose, and rhamnose in EPS composition. EPS-producing L. paracasei KB28 induced the expression of tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, and IL-12 in mouse macrophages. This strain also caused the degradation of $I{\kappa}B{\alpha}$ and phosphorylation of the major MAPKs: Jun N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase (ERK)1/2. The use of pharmacological inhibitors showed that different signaling pathways were involved in the induction of TNF-${\alpha}$, IL-6 and IL-12 by L. paracasei KB28. Our results provide information for a better understanding of the molecular mechanisms of the immunomodulatory effect of food-derived EPS-producing lactic acid bacteria.

Immunomodulatory activity of cultivated wild ginseng pharmacopuncture (산양산삼약침의 면역조절기능)

  • Kim, Young-Jin;Lee, Joon-Moo;Lee, Eun
    • Korean Journal of Acupuncture
    • /
    • v.27 no.1
    • /
    • pp.31-47
    • /
    • 2010
  • Objectives: To investigate the anti-inflammatory effects of cultivated wild ginseng pharmacopuncture in lipopolysaccharide (LPS)-induced inflammatory rat model. Methods: Sprague-Dawley rats were divided into 4 groups; LPS control (n=6), LPS+cultivated wild ginseng pharmacopuncture at CV4 (n=6), LPS+cultivated wild ginseng pharmacopuncture at CV17 (n=6), and LPS+cultivated wild ginseng pharmacopuncture at Ex-HN1 (n=6). Pharmacopuncture (0.1 ml) was given every two days for 4 weeks followed by inflammation induction by peritoneal LPS injection (5 mg/kg). Blood, liver tissue, and peritoneal lavage fluid were taken and proinflammatory cytokines and other related factors were analysed. Results: Compared with the control group, CV4 and Ex-HN1 pharmacopuncture groups significantly attenuated plasma IL-$1{\beta}$, IL-6, and TNF-$\alpha$ increase at 2h and 5h after LPS injection (P<0.05). A significant difference from control group emerged at 5 h for plasma IL10 (P<0.05). For liver cytokines analyzed at 5 h after LPS injection, only CV4 pharmacopuncture group showed significant difference in TNF-$\alpha$ and IL-10 (P<0.05). Blood CD4/CD8 ratio and the phagocytic activities of polymorphonuclear neutrophils were not different from those of control group in all pharmacopuncture groups (P>0.05). CV4 pharmacopuncture significantly attenuated increase of plasma ${NO_3}^-/{NO_2}^-$, Intracellular adhesion molecule-1 (ICAM-1), cytokine-induced neutrophil chemoattractant-1 (CINC-1), and prostaglandin $E_2$ ($PGE_2$) compared with the control group (P<0.05). Monocyte chemoattractant protein-1, $PGE_2$, and CINC-1 level of CV4 pharmacopuncture group was significantly different from those from the control group (P<0.05). Conclusions: These results indicate that cultivated wild ginseng pharmacopuncture at CV4 may have a potent anti-inflammatory effect in an LPS-induced inflammatory rat model.

Effect of Levamisole on Immunomodulation of Eels (Anguilla japonica) In Vitro (In vitro에서 Levamisole이 양식뱀장어의 면역조절작용에 미치는 영향)

  • Choi, Min-Soon;Park, Kwan-Ha;Joung, Kyung-Min;Shim, Hyun-Bin;Yun, Sung-Ho
    • Journal of fish pathology
    • /
    • v.12 no.1
    • /
    • pp.16-23
    • /
    • 1999
  • The immunomodulatory effects of levamisole (LMS) were evaluated in leucocytes of eels in vitro. Proliferation of lymhocytes treated with T-cell mitogen (Con A or PHA) was markedly inhibited by LMS in a dose dependent manner. B cell mitogen (LPS), in contrast, slightly increased the proliferaion. On the other hand, production of MIF and MAF when treated with Con A was increased in a dose-dependent way. NK cell activities were somewhat increased when LMS was pretreated and this augmentation was due to an increase in binding capacity of effector-target cell, but not due to the target cell lytic activity of effector cells. Phagocytic activity, superoxide anion formation, hydrogen peroxide formation and lysozyme activity of leucocytes were enhanced by LMS in a dose related-manner. These results suggest that LMS might modulate the immmune responses by activation of cytokine production and by augmentation of leukocyte activity but not by increment of immunocompetent cell numbers.

  • PDF

Immune-Enhancing Effects of Phellinus linteus Fruit Body and Mycelium Cultured in Cudrania tricuspidata (꾸지뽕나무 배양 상황버섯 자실체 및 균사체의 면역증진 효과)

  • Hong, Da Hyun;Joo, In Hwan;Park, Jong Min;Han, Su Hyun;Lee, Su Bin;Gwak, Seong Geun;Kim, Dong Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.33 no.5
    • /
    • pp.275-281
    • /
    • 2019
  • Polysaccharides produced in microorganisms and plants are known to increase the immune response in the body. We proposed analysis of beta-glucan contents of phellinus linteus fruit body (FB) and mycelium (MC) cultured in cudrania tricuspidata. Also, we examined whether fruit body and mycelium can increase the immune response in cyclophosphamide-induced immunosuppression animal models. We injected cyclophosphamide (50 mg/kg) twice to produce immunosuppression mice. Then, FB (200 mg/kg) and MC (200 mg/kg) were oral administered for 14 days. In order to confirm the immune-enhancing effect of FB and MC, we analyzed spleen weight, the number of immune cells, cytokines, and immunoglobulins levels. Cyclophosphamide decreased the weight of spleen, the number of immune cells. However, FB and MC have significantly increased the weight of spleen, the number of white blood cell, lymphocyte and monocyte. In addition, they have significantly increased immune-related cytokines (IL-2 and IFN-${\gamma}$) and immunoglobulins (IgA, IgG, IgM) levels. As a results, phellinus linteus fruit body (FB) and mycelium (MC) cultured in cudrania tricuspidata can be used as effective natural materials for immune-enhancing.