• Title/Summary/Keyword: Immunocytochemical

Search Result 174, Processing Time 0.02 seconds

Low Frequency Noise Induces Stress Responses in the Rat (흰쥐에서 저주파소음에 의한 스트레스 반응)

  • Choi, Woong-Ki;Lee, Kyu-Sop;Joung, Hye-Young;Lee, Young-Chang;Sohn, Jin-Hun;Lee, Bae-Hwan;Pyun, Kwang-Ho;Shim, In-Sop
    • Science of Emotion and Sensibility
    • /
    • v.10 no.3
    • /
    • pp.411-418
    • /
    • 2007
  • Exposure to low frequency noise(LFN) can lead to vibroacoustic diseases(VADs), which include a systemic disease with lesions in a broad spectrum of organs and a psychiatric condition. It is known that VAD is an established risk factor for the development of many psychological conditions in humans and rodents, including major depression and anxiety disorder. The present study investigated the effects of LFN on neuronal stress responses in the rat brain. The neuronal expression of the proto-oncogene c-fos in the paraventricular nucleus(PVN) of the hypothalamus and tyrosine hydroxylase(TH) in the LC was observed. The immunocytochemical detection of the Fos protein and TH has been used as a marker of neuronal activation in response to stress. In addition, corticosterone concentration was evaluated by using an enzyme-linked immunosorbent assay(ELISA). The LFN groups were exposed to 32.5Hz and 125Hz of noise(4hr/day for 2days). The numbers of c-fos and TH-immunoreactive cells in the PVN and LC were significantly increased in the LFN groups(32.5Hz and 125Hz) compared to the normal group. Corticosterone concentration in plasma was also increased in LFN groups. The present results demonstrated that exposure with LFN produced a pronounced increase in expression of c-Fos and TH in stress-relevant brain areas. These results suggest that the neural characteristics involved in LFN are similar to those activated by typical processive stressors. These results also suggest that the central and peripheral activations by LFN may be related to LFN-related negative behavioral dysfunctions such as VADs.

  • PDF

A MOLECULAR BIOLOGIC STUDY ON BIOCOMPATIBILITY OF METALLIC DENTAL MATERIALS USED FOR CHILDREN WITH CULTURED HUMAN GINGIVAL FIBROBLASTS (인체 섬유모세포(HGF-1) 배양에서 소아용 치과금속재의 세포친화성에 대한 분자생물학적 연구)

  • Kim, Ju-Mi;Jeong, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.2
    • /
    • pp.243-254
    • /
    • 2002
  • For the purpose of evaluating the biocompatability of 3 kinds of metallic materials frequently used in pediatric dentistry (stainless steel crown, orthodontic band, orthodontic wire), cellular and molecular studies, including cell growth and proliferation, screening of cell death with determination of types whether necrosis or apoptosis and changes in expressions of related signaling molecules were examined, using cultured human gingival fibroblasts (HGF-1), HGF-1 was cultured in Dulbecco's modified Eagle's medium. among which the 3rd to 6th generations of HGF-1 were used. The specimen were divided into stainless steel crown (R), band (B) and wire (W). The immunocytochemical study was done for the detection of anti-PCNA (proliferating cell nuclear antigen) labeling. With extracted protein, western blot was done for the detection of ERK1/2, JNK, and p38, using individual antibodies. Cultured cells proliferated, remarkably till 7 day and slightly at 11 day. There was no statistical significance in the counts of proliferating HGF-1 between control and experimental groups (p>0.05). Relative growth rates were no statistically significant difference between control and experimental groups (p>0.05). PCNA labeling indexes showing similar patterns in control and experimental groups. The expressions of ERK1 and ERK2, p38 were similar in control and experimental groups. The expression of JNK increased at 1st day, slightly decreased at 4th day and markedly increased at 7th and 11 day. Although the patterns of control and experimental groups were similar, the increased expressions of JNK at late period suggest a possible stress due to inhibited cell growth and proliferation, and worse culture condition. Conclusively, the 3 kinds of metal specimens used in this study did not induce cellular and molecular hazards during short term culture of HGF-1. But, for the better clinical stability, the establishment of long period culture and animal experiment was thought necessary.

  • PDF

Chondrogenesis of Mesenchymal Stem Cells Derived from Human Umbilical Cord Blood (사람 제대혈 유래 간엽줄기세포로부터 연골세포 분화)

  • Koh, Phil-Ok;Cho, Jae-Hyun;Nho, Kyoung-Hwan;Cha, Yun-Im;Kim, Young-Ki;Cho, Eun-Hae;Lee, Hee-Chun;Jung, Tae-Sung;Yeon, Seong-Chan;Kang, Kyung-Sun;Lee, Hyo-Jong
    • Journal of Veterinary Clinics
    • /
    • v.26 no.6
    • /
    • pp.528-533
    • /
    • 2009
  • In the current study, the mesenchymal stem cells (MSCs) isolated and propagated from the human umbilical cord blood (UCB) were tested for their capabilities of differentiation into chondrocytes in vitro. The mesenchymal progenitor cells (MPCs) collected from UCB were cultured in a low glucose DMEM medium with 10% FBS, L-glutamine and antibiotics. The human MSC colonies were positively stained by PAS reaction. When the immunophenotypes of surface antigens on the MSCs were analyzed by fluorescence-activated cell sorter (FACS) analysis, these cells expressed positively MSC-related antigens of CD 29, CD44, CD 90 and CD105, whereas they did not express antigens of CD14, CD31, CD34, CD45, CD133 and HLA-DR. Following induction these MSCs into chondrocytes in the chondrogenic differentiation medium for 3 weeks or more, the cells were stained positively with safranin O. We clearly confirmed that human MSCs were successfully differentiated into chondrocytes by RT-PCR and immunofluorescent stain of type-II collagen protein. These data also indicate that the isolation, proliferation and differentiation of the hUCB-derived MSCs in vitro can be used for elucidating the mechanisms involved in chondrogenesis. Moreover this differentiation technique can be applied to developing cell-based tissue regeneration or repair damaged tissues.

Study of Rat Mammary Epithelial Stem Cells In Vivo and In Vitro (생체 및 시험관에서 유선 상피 모세포의 분리와 동정)

  • Nam Deuk Kim;Kee-Joo Paik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.3
    • /
    • pp.470-486
    • /
    • 1995
  • Mammary epithelial cells contain a subpopulation of cells with a large proliferativ potential which are responsible for the maintenance of glandular cellularity and are the progenitor cells of mammary cancer. These clonogens give rise to multicellular clonal alveolar or ductal units(AU or DU) on transplantation and hormonal stimulation. To isolate putative mammary clonogens, enzymatically monodispersed rat mammary epithelial cells from organoid cultures and from intact glands are sorted by flow cytometry according to their affinity for FITC labeled peanut lectin(PNA) and PE labeled anti-Thy-1.1 antibody(Thy-1.1) into four subpopulations : cells negative to both PNA and Thy-1.1(B-), PNA+cells, Thy-1.1+cells, and cells positive to both reagents(B+). The in vivo transplantation assays indicate that the clonogenic fractions of PNA+cells from out-growths of organoids in primary cultures for three days in complete hormone medium(CHM) are significantly higher than those of cells from other subpopulations derived from cultrues or from intact glands. Extracellular matrix(ECM) is a complex of several proteins that regulated cell function ; its role in cell growth and differentiation and tissue-specific gene expression. It can act as a positive as well as a negative regulator of cellular differentiation depending on the cell type and the genes studied. Regulation by ECM is closely interrelated with the action of other regulators of cellular function, such as growth factors and hormones. Matrigel supports the growth and development of several different multicellular colonies from mammary organoids and from monodispersed epithelial cells in culture. Several types of colonies are observed including stellate colonies, duct-like structures, two- and three-dimensional web structures, squamous organoids, and lobulo-duct colonies. Organoids have the greatest proliferative potential and formation of multi-cellular structures. Phase contrast micrographs demonstrate extensive intracellular lipid accumulation within the web structures and some of duct-like colonies. At the immunocytochemical and electron micrograph level, casein proteins are predominantly localized near the apical surface of the cells or in the lumen of duct-like or lobulo-duct colonies. Squamous colonies are comprised of several layers of squamous epithelium surrounding keratin pearls as is typical fo squamous metaplasia(SM). All-trans retinoic acid(RA) inhibits the growth of SM. The frequency of lobulo-ductal colony formation increased with the augmentation of RA concentration in these culture conditions. The current study models could provide powerful tools not only for understanding cell growth and differentiation of epithelial cells, but also for the isolation and characterization of mammary clonogenic stem cells.

  • PDF