• Title/Summary/Keyword: Immune-challenged hemolymph

Search Result 6, Processing Time 0.022 seconds

Effects of immune-challenged domestic silkworm hemolymph on the regulation of SIRT5 and PRDx1 expression

  • Jin Ha Yun;Seong Ryul Kim;Seung-Won Park
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.47 no.2
    • /
    • pp.134-139
    • /
    • 2023
  • SIRT5 and PRDx1 play crucial roles in cancer and are involved in the basic mechanisms of reactive oxygen species detoxification. In our previous studies, we showed that hemolymph extracts of immune-challenged Bombyx mori have antioxidant properties. Following H2O2 stimulation, immune-challenged B. mori hemolymph extracts elicited SIRT5 downregulation activity, reaching effective activity at the highest concentration of 100 ppm. Additionally, cells treated with immune-challenged B. mori hemolymph extracts demonstrated increased PRDx1 mRNA expression compared to that of PBS-treated cells. Therefore, immune-challenged B. mori hemolymph extracts offer a potential auxiliary means of treating drug-resistant tumors through downregulation of SIRT5 and upregulation of PRDx1 expression. Nevertheless, further studies on the effects of B. mori hemolymph on SIRT5 and PRDx1 regulation are pertinent for using it as a food or pharmaceutical material and understanding its therapeutic effect on tumors, including those that are drug-resistant.

Functional analysis of the antioxidant activity of immune-challenged Bombyx mori hemolymph extracts in the human epithelial Caco-2 cell line

  • Kim, Seong Ryul;Kim, Kee-Young;Kim, Seong-Wan;Park, Seung-Won
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.40 no.1
    • /
    • pp.16-21
    • /
    • 2020
  • Humans use insects as food and traditional medicine for many years. Hemolymph is the circulating fluid of insects and is a key component of their immune system. However, limited information is available regarding hemolymph identification, development, and differentiation, as well as the related cellular immune responses. In a previous study, hemolymph extracts prepared from Bombyx mori larvae were found to exert anti-inflammatory effects. In this study, we aimed to identify and compare the antioxidant activity of immune-challenged and unchallenged B. mori hemolymph extracts in vitro. For this purpose, human epithelial Caco-2 cells were first exposed to oxidative stress and then treated with various concentrations and incubation times of either immune-challenged or unchallenged B. mori hemolymph extracts. Next, we determined the effect of treatment on the relative expression of GPX-1, SOD-1, and SOD-2 antioxidant marker genes. We found that the expression rates of the three marker genes were markedly higher at a immune-challenged hemolymph extract concentration of 80 ppm compared to those at other concentrations, and the antioxidant effects were enhanced after treatment for 48 hr. Thus, B. mori hemolymph extracts showed antioxidant activity within the limited time and dose. Especially, the immune-challenged B. mori hemolymph extracts showed higher the antioxidant activities than unchallenged one. The activity of silkworm hemolymph extracts could facilitate the development of new types of functional foods, feed additives, and biomaterials with antioxidant properties.

A preliminary study of the anti-inflammatory activities of the Japanese oak silk moth, Antheraea yamamai

  • Park, Seung-Won
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.45 no.1
    • /
    • pp.17-21
    • /
    • 2022
  • The present study aimed to determine whether a hemolymph prepared from Antheraea yamamai larvae had the same biological activities using a Bombyx mori hemolymph prior to exposure to lipopolysaccharide (LPS) in order to induce an inflammatory response. The effects of the hemolymph were determined using a reverse transcription-quantitative polymerase chain reaction to assess the expression of pro-inflammatory molecules. The A. yamamai hemolymph exerted anti-inflammatory effects on LPS-activated human monocytic leukemia cells via Toll-like receptor (TLR) 4-mediated suppression, similar to the B. mori hemocyte extract. Treatment with the A. yamamai hemolymph significantly suppressed LPS-induced upregulated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNA expression at all tested concentrations compared with the control, similar to the B. mori immune-challenged hemolymph. Finally, the A. yamamai hemolymph, like the B. mori immune-challenged hemolymph, suppressed all of these concentrations in a dose-independent manner. These results demonstrate that the hemolymph of A. yamamai exhibited important biologically active substances. Further in-depth functional studies are required to fully understand the mechanisms underlying the biological activities of wild-type silkworm hemolymphs.

The Antimicrobial Activity of Bacterial-challenged Black Soldier Fly, Hermetia illucens (세균에 의해 면역이 유도된 동애등에의 항균활성)

  • Park, Kwanho;Yun, Eun-Young;Park, Seung-Won;Goo, Tae-Won
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1409-1414
    • /
    • 2016
  • In the larvae of the black soldier fly, Hermetia illucens, innate immunity mechanisms are activated in response to various pathogens and stimulants, resulting in the expression of antimicrobial peptides (AMPs). To induce the mass production of AMPs, H. illucens fifth instar larvae were immunized with five different kinds of bacteria. We isolated from the hemolymph of the H. illucens larvae after bacterial challenge, and their antimicrobial activities against Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli) were measured using the inhibition zone assay. Among these five different kinds of bacteria, the hemolymph of Bacillus subtilis-challenged H. illucens larvae showed the strongest antimicrobial activity against both Gram-positive bacteria and Gram-negative bacteria. The antimicrobial activity of the hemolymph of $1{\times}10^9cfu/ml$ B. subtilis-challenged H. illucens peaks at 24 hr at 48 hr post-infection and gradually declines with time. Moreover, the immunized hemolymph also showed strong antimicrobial activity against various poultry pathogens such as S. enteritidis, S. typhimurium, and S. pullorum. These results suggest that the expression of AMP genes in B. subtilis-challenged H. illucens is up-regulated by innate immune responses, and that B. subtilis-challenged H. illucens overexpressing AMPs may be useful as a feed additive in livestock diets to reduce the need for antibiotics.

Isolation and purification of a cecropin-like antimicrobial peptide from the japanese oak silkworm, Antheraea yamamai (천잠 세크로핀 항균펩타이드 분리 및 정제)

  • Kim, Seong-Ryul;Goo, Tae-Won;Choi, Kwang-Ho;Park, Seung-Won;Kim, Sung-Wan;Hwang, Jae-Sam;Kang, Seok-Woo
    • Journal of Sericultural and Entomological Science
    • /
    • v.50 no.2
    • /
    • pp.145-149
    • /
    • 2012
  • Cecropin is a well-studied antimicrobial peptide that play important role as key factor in insect humoral immunity. In this study, cecropin-like antimicrobial peptide was isolated and purified from the larval haemolymph of immune-challenged japanese oak silkworm, Antheraea yamamai. To isolate antimicrobial peptide, we separated and compared acidic extracted hemolymph protein bends between control and immune-challenged larvae using SDS-PAGE analysis. In the immune hemolymph extract, but not of non-immune hemolymph, we detected differential expressed peptide band with molecular mass 4,223.01 Da. To understand this peptide better, we successfully purified this peptide using cation exchange chromatography and gel permeation chromatography. Its N-terminal amino acid sequence obtained by Edman degradation evidenced a significant degree of identity with other lepidopteran cecropins. The purified A. yamamai cecropin-like peptide showed a broad spectrum of activity against fungi, Gram-negative and Gram-positive bacteria.

Antibacterial effects of two cecropin type peptides isolated from the silkworm against Salmonella species

  • Kim, Seong Ryul;Park, Jong Woo;Kim, Seong-Wan;Kim, Su Bae;Jo, You-Young;Kim, Kee Young;Choi, Kwang-Ho;Ji, Sang Deok;Kim, Jong gil;Kweon, HaeYong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.37 no.2
    • /
    • pp.95-99
    • /
    • 2018
  • In insect defense system, antimicrobial peptides (AMPs) are one of important biological molecules to survive in a variety of environments. Insect can synthesize AMPs to protect against invading pathogens in humoral immune response. Taking more advantage of biological antimicrobial molecules, we report antibacterial activity of two cecropin type peptides, cecropin and moricin, isolated from the silkworm against four salmonella species. In this work, we purified antimicrobial candidate peptides (AMCP) from the extracts of immune challenged silkworm larval hemolymph by two-step chromatographic purification procedure, cation exchange and gel permeation chromatography. The molecular weights of purified peptides were estimated to be about 4 ~ 5 kDa by Tricin SDS-PAGE analysis, and identified as silkworm cecropin and moricin by NCBI BLAST homology search with their N-terminal amino acid sequences. As antibacterial activity assay, the purified peptides showed stronger antibacterial activity against Salmonella pathogens with an MIC value of $1{\sim}4{\mu}g/mL$. Therefore two cecropin type peptides purified from the silkworm will be valuable potential materials for development of new natural antibiotics.