• Title/Summary/Keyword: Immune suppression

Search Result 275, Processing Time 0.035 seconds

Immunologic Mechanism of Experimental and Therapeutic Ultraviolet B Responses

  • Lew, Wook
    • IMMUNE NETWORK
    • /
    • v.2 no.2
    • /
    • pp.65-71
    • /
    • 2002
  • The immunological mechanism of the responses to ultraviolet (UV) B radiation in mouse models were investigated by the suppression of contact hypersensitivity (CHS) and delayed type hypersensitivity (DTH), and susceptibility to infection. However, there are some differences in immune suppression according to the different models as well as the irradiation protocols. Therefore, this review focused on the differences in the suppressive effects on CHS and DTH, and susceptibility to infection in relation to the different in vivo models. Recent advances in cytokine knockout mice experiments have the reexamination of the role of the critical cytokines in UVB-induced immune suppression, which was investigated previously by blocking antibodies. The characteristics of the suppressor cells responsible for UVB-induced tolerance were determined. The subcellular mechanism of UVB-induced immune suppression was also explained by the induction of apoptotic cells through the Fas and Fas-ligand interaction. The phagocytosis of the apoptotic cells is believed to induce the production of the immune suppressive cytokine like interleukin-10 by macrophages. Therefore, the therapeutic UVB response to a skin disease, such as psoriasis, by the depletion of infiltrating T cells could be considered in the extension line of apoptosis and immune suppression.

Effects of Panax ginseng on Morphine-induced Immune Suppression

  • Lee, Shee-Yong;Kim, Ae-Young;Kim, Young-Ran;Kim, Kyeong-Man
    • Biomolecules & Therapeutics
    • /
    • v.3 no.3
    • /
    • pp.177-181
    • /
    • 1995
  • To investigate the possibility of Panax ginseng as a therapeutic agent for the immune suppression, ginseng total saponin (GTS) extracted from korean red ginseng was tested on immune functions from morphine-induced immune suppressed mice. To study how immune functions are affected by morphine and also to test whether GTS can be an useful therapeutic agent for morphine toxicity, several parameters were employed, body weight, immune organ weight, B cell functions, and T cell function. Morphine impaired the development of body weight and immune organ weight such as spleen and thymus. Morphine also depressed a B-cell function, antibody production. T-cell functions studied by type IV hypersensitivity test were most markedly affected by morphine treatment. GTS restored most of morphine-induced immune suppression. GTS restored the morphine-induced decrease in spleen weight to body weight ratio in a dose dependent manner, but not the body weight decrease. Also all of the morphine-induced impairments of B cell functions and cellmediated immunity were fully recovered by GTS. These results suggest that ginseng product could be very helpful for the treatment of immune suppression occurring in morphine abusers.

  • PDF

Molecular Perspectives of SARS-CoV-2: Pathology, Immune Evasion, and Therapeutic Interventions

  • Shah, Masaud;Woo, Hyun Goo
    • Molecules and Cells
    • /
    • v.44 no.6
    • /
    • pp.408-421
    • /
    • 2021
  • The outbreak of coronavirus disease 2019 (COVID-19) has not only affected human health but also diverted the focus of research and derailed the world economy over the past year. Recently, vaccination against COVID-19 has begun, but further studies on effective therapeutic agents are still needed. The severity of COVID-19 is attributable to several factors such as the dysfunctional host immune response manifested by uncontrolled viral replication, type I interferon suppression, and release of impaired cytokines by the infected resident and recruited cells. Due to the evolving pathophysiology and direct involvement of the host immune system in COVID-19, the use of immune-modulating drugs is still challenging. For the use of immune-modulating drugs in severe COVID-19, it is important to balance the fight between the aggravated immune system and suppression of immune defense against the virus that causes secondary infection. In addition, the interplaying events that occur during virus-host interactions, such as activation of the host immune system, immune evasion mechanism of the virus, and manifestation of different stages of COVID-19, are disjunctive and require thorough streamlining. This review provides an update on the immunotherapeutic interventions implemented to combat COVID-19 along with the understanding of molecular aspects of the immune evasion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which may provide opportunities to develop more effective and promising therapeutics.

Immune-Enhancing Effects of Lactobacillus plantarum 200655 Isolated from Korean Kimchi in a Cyclophosphamide-Induced Immunocompromised Mouse Model

  • Kim, Kyeong Jin;Paik, Hyun-Dong;Kim, Ji Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.726-732
    • /
    • 2021
  • In this study, we evaluated the immune-enhancing activity of kimchi-derived Lactobacillus plantarum 200655 on immune suppression by cyclophosphamide (CP) in ICR mice. Animals were fed distilled water or 1×109 colony-forming unit/kg B.W. 200655 or Lactobacillus rhamnosus GG as a positive control for 14 days. An in vivo model of immunosuppression was induced using CP 150 and 100 mg/kg B.W. at 7 and 10 days, respectively. Body weight, spleen index, spleen weight, and gene expression were measured to estimate the immune-enhancing effects. The dead 200655 (D-200655) group showed an increased spleen weight compared to the sham control (SC) group. Similarly, the spleen index was significantly higher than that in the CP-treated group. The live 200655 (L-200655) group showed an increased mRNA expression of tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6 in splenocytes. Also, the iNOS and COX-2 mRNA expression was upregulated in the L-200655 group compared to the CP-only (SC) group. The phosphorylation of ERK and MAPK was also upmodulated in the L-200655 group. These results indicate that L. plantarum 200655 ameliorated CP-induced immune suppression, suggesting that L. plantarum 200655 may have the potential to enhance the immune system.

Enhancement of Immune Response by New Herb Mixture, APA-01, in Mice (한방혼합액 APA-01의 면역 증강 효과)

  • Lee Young Sun;Han Ok Kyung;Park Chan Woo;Jeon Tae Won;Lee Eun Sil;Shin Sang Woo;Kim Kwang Joong;Kim Hyo Jung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.3
    • /
    • pp.483-489
    • /
    • 2002
  • APA-01, which is an aqueous extract of five Chinese herbs, is a modified formula of Huoxiang-Zhengqi-San. The effect of new herb extract on immune response was investigated. The parameter examined to assess apparent immune response of APA-01 in mice included changes of body weight, relative weight of immune organs, cell proliferation and cytokine gene expression. The body weight and relative weight of immune organs were not significantly changed among the tested groups. In the spleen cell prolijeration assay, APA-01 increased the cell proliferation in a dose-dependent manner. Methotrexate (MTX), an agent of immune suppression, inhibited the spleen cell proliferation (IC/sub 50/: 800㎍/㎖). However, APA-01 significantly inhibited the suppression of mouse spleen cell proliferation. Therefore, it seems that APA-01 has a reducing effect of immune suppression. Immunomodulatory effect of APA-01 was further investigated using reverse transcription polymerase chain reaction (RT-PCR) in mouse spleen cells. In RT-PCR test, APA-01 enhanced the expression of cyclooxygenase-2 (COX-2) mRNA in a dose-dependent manner. In spite of immune suppression by MTX, COX-2 mRNA was induced by co-treatment with APA-01. These results suggest that APA-01 stimulates the proliferation of spleen cells, regulates the expression of COX-2 mRNA, and accelerates the recovery of inhibition of spleen cell proliferation induced by MTX, thus providing the immunological basis for clinical benefit of APA-01.

Immune-enhancing effects of a traditional herbal prescription, Kyung-Ok-Ko (전통적인 한방 처방 경옥고의 면역 증강 효과)

  • Roh, Seong-Soo;Lee, Wonhwa;Kim, Kyung-Min;Na, MinKyun;Bae, Jong-Sup
    • The Korea Journal of Herbology
    • /
    • v.34 no.2
    • /
    • pp.41-47
    • /
    • 2019
  • Objectives : A traditional herbal prescription, Kyung-Ok-Ko (KOK), has long been used in oriental medicine as an invigorant for age-related diseases, such as amnesia and stroke. However, the beneficial value of KOK for immune responses is largely unknown. Based on the above mentioned effects of KOK, other previous reports, and its use in traditional medicine, we hypothesized that KOK displays beneficial effects against methotrexate (MTX)-induced immune suppression. Methods : We investigated the effects of KOK (0.6 g/kg/day, oral (p.o.)) on deteriorated immunity caused by MTX (2 mg/kg/day, p.o.) in an immune suppression mouse model. MTX was fed to mice once a day for 7 days. After the immune responses of the mice deteriorated by MTX treatment, KOK in water was fed to the mice once a day for 14 days. We then measured the expression levels of various cytokines, such as T helper cell (Th1, Th2) cytokines, and the number of immune cells, such as spleen T cells, B cells, and macrophages. Results : The data showed that MTX decreased Th1 profiles (interferon $(IFN)-{\gamma}$, interleukin (IL)-2, IL-12) and the number of immune cells, and increased Th2 profiles (IL-4, IL-5, IL-13), which were normalized significantly by post-administration of KOK. However, there was no significant difference in body-weight gain between MTX- and KOK-treated mice. Conclusion : These results indicate that KOK has immune-enhancing functions and reduces immunotoxicity of MTX, suggesting that supplementation with KOK will improve immune responses clinically and be useful for the prevention of immune-related diseases.

Effects of some organophosphate pesticides on the murine immune system following subchronic exposure 1

  • Moon, Chang-Kiu;Yun, Yeo-Pyo;Lee, Soo-Hwan;Lee, Young-Soon
    • Archives of Pharmacal Research
    • /
    • v.9 no.3
    • /
    • pp.175-181
    • /
    • 1986
  • Four technical grade organophosphate pesticides (Fenitrothion, Fenthion, Dizninon and EPN) were investigated for their effects on the murine immune function. Among the immunotoxicological assay parameters of NIEHS, humoral immune parameter and pathotoxicological indicators were examined in this study. Subchronic exposure of rodents to these pesticides resulted in marked suppression of humoral immune function and moderate histological changes of lymphoid organ any significant alterations of clinical status.

  • PDF

A Feasibility Study on Application of Immune Network for Intelligent Controller of a Multivariable System

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.115.5-115
    • /
    • 2001
  • This paper suggests that the immune algorithm can effectively be used in tuning of a multivariable system. Then artificial immune network always has a new paraller decentralized processing mechanism for various situations, since antibodies communication to each other among different species of antibodies/B-cells through the simulation and suppression chains among antibodies that form a large-scaled network. In addition to that, the structure of the network is not fixed, but varies continuously. That is, the artificial immune network flexibly self-organizes according to dynamic changes of external environment (meta-dynamics function). However, up to the present time, models based on the conventional crisp approach ...

  • PDF

Intelligent Control of Multivariable Process Using Immune Network System

  • Kim, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2126-2128
    • /
    • 2001
  • This paper suggests that the immune network algorithm based on fuzzy set can effectively be used in tuning of a PID controller for multivariable process or nonlinear process. The artificial immune network always has a new parallel decentralized processing mechanism for various situations, since antibodies communicate to each other among different species of antibodies/B-cells through the stimulation and suppression chains among antibodies that from a large-scaled network. In addition to that, the structure of the network is not fixed, but varies continuously. On the other hand, a number of tuning technologies have been considered for the tuning of a PID controller. As a less common method, the fuzzy and neural network or its combined techniques are applied. However, in the case of the latter, yet, it is not applied in the practical field, in the former, a higher experience and technology is required during tuning procedure. Along with these, this paper used the fuzzy set in order that the stimulation and suppression relationship between antibody and antigen can be more adaptable controlled against the external condition, including noise or disturbance of plant. The immune network based on fuzzy set suggested here is applied for the PID controller tuning of multivariable process with two inputs and one output and is simulated.

  • PDF

Immune checkpoint inhibitors: recent progress and potential biomarkers

  • Darvin, Pramod;Toor, Salman M.;Nair, Varun Sasidharan;Elkord, Eyad
    • Experimental and Molecular Medicine
    • /
    • v.50 no.12
    • /
    • pp.10.1-10.11
    • /
    • 2018
  • Cancer growth and progression are associated with immune suppression. Cancer cells have the ability to activate different immune checkpoint pathways that harbor immunosuppressive functions. Monoclonal antibodies that target immune checkpoints provided an immense breakthrough in cancer therapeutics. Among the immune checkpoint inhibitors, PD-1/PD-L1 and CTLA-4 inhibitors showed promising therapeutic outcomes, and some have been approved for certain cancer treatments, while others are under clinical trials. Recent reports have shown that patients with various malignancies benefit from immune checkpoint inhibitor treatment. However, mainstream initiation of immune checkpoint therapy to treat cancers is obstructed by the low response rate and immune-related adverse events in some cancer patients. This has given rise to the need for developing sets of biomarkers that predict the response to immune checkpoint blockade and immune-related adverse events. In this review, we discuss different predictive biomarkers for anti-PD-1/PD-L1 and anti-CTLA-4 inhibitors, including immune cells, PD-L1 overexpression, neoantigens, and genetic and epigenetic signatures. Potential approaches for further developing highly reliable predictive biomarkers should facilitate patient selection for and decision-making related to immune checkpoint inhibitor-based therapies.