• Title/Summary/Keyword: Immune mechanism

Search Result 657, Processing Time 0.034 seconds

Innate Immune Response of NNV Infection in Fish and Its Disease Prevention

  • Lu, Ming-Wei;Wu, Jen-Leih
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.127-132
    • /
    • 2007
  • The innate immune response which is seen as the initial defense mechanism induced upon foreign invasion has been well documented in higher vertebrates. This has also been observed in fish infected with NNV. However, the fish immune system based on fully established genome project has not been fully elucidated. Therefore, in this review, we hope to correlate NNV infection in fish that has devastated the aquaculture industry, to its host immune system. Further, we discuss the potential preventive measures in overcoming the widespread of this neurodisease.

  • PDF

Intelligent Tuning of a PID Controller Using Immune Algorithm

  • Kim, Dong-Hwa;Kaoru Hirota
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.91.5-91
    • /
    • 2001
  • This paper suggests that the immune algorithm can effectively be used in tuning of a PID controller. The artificial immune network always has a new parallel decentralized processing mechanism for various situations, since antibodies communicate to each other among different species of antibodies/B-cells through the stimulation and suppression chains among antibodies that form a large-scaled network. In addition to that, the structure of the network is not fixed, but varies continuously. That is, the artificial immune network flexibly self-organizes accord Eng to dynamic changes of external environment (meta-dynamics function). However, up to the present time, models based on the conventional crisp approach have been used to describe dynamic model relationship between antibody and antigen. Therefore, there are some problems ...

  • PDF

Effect of capsaicin on murine lymphocyte functions and lymphoid tissue morphology

  • Lee, June-Chul;Park, Yeong-Min
    • IMMUNE NETWORK
    • /
    • v.1 no.3
    • /
    • pp.203-212
    • /
    • 2001
  • Background: Rapid advances in neuroendocrine immunology have established the concept of bidirectional communication between the immune and neuroendocrine systems. Capsaicin suppresses the immune function by destroying substance P acting as mediatior of neuroendocrine immune system. Methods and Results: In this study, effect of capsaicin on mature murine lymphocyte functions and lymphoid tissue morphology was examined. Formally, capsaicin showed the strong cytotoxic effect on splenocyte over $10{\mu}g/ml$ concentration in citro. And proliferation and Th1-cytokine expression of splenic cells in mice that received high dose of capsaicin ($100{\mu}g/mouse$) were significantly diminished. However, low dose of capsaicin treatment did not influence these responses in vivo($1{\mu}g/mouse$) and in vitro (under $5{\mu}g/ml$). And the morphology of spleen and lymph nodes after capsaicin treatment was observed. In the spleen of mice injected with high dose of capsaicin (100, $200{\mu}g/mouse$), the size of white pulp was significantly decreased and the length of red pulp was increased, Moreover, vascularity index was diminished in a dose dependent manner. Conclusion: These results implies that immunosuppressive effect of capsaicin is associated with cytotoxic activity on lymphocyte, Th1-cytokine down-regulation and lymphoid tissue abnormalization, and this report is expected to give a hand to the study for the mechanism of action of neurotoxin of the immune system.

  • PDF

A Study on Adaptive Control of AGV using Immune Algorithm (면역알고리즘을 이용한 AGV의 적응제어에 관한 연구)

  • 이영진;최성욱;손주한;이진우;조현철;이권순
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.04a
    • /
    • pp.56-63
    • /
    • 2000
  • Abstract - In this paper, an adaptive mechanism based on immune algorithm is designed and it is applied for the autonomous guided vehicle(AGV) driving. When the immune algorithm is applied to the PID controller, there exists the case that the plant is damaged due to the abrupt change of PID parameters since the parameters are adjusted almost randomly. To solve this problem, a neural network is used to model the plant and the parameter tuning of the model is performed by the immune algorithm. After the PID parameters are determined in this off-line manner, these gains are then applied to the plant for the on-line control using immune adaptive algorithm. Moreover, even though the neural network model may not be accurate enough intially, the weighting parameters are adjusted to be accurate through the on-line fine tuning. The computer simulation for the control of steering and speed of AGV is performed. The results show that the proposed controller has better performances than other conventional controllers.

  • PDF

Role of Dietary Zinc as a Nutritional Immunomodulator

  • Goswami, T.K.;Bhar, R.;Jadhav, S.E.;Joardar, S.N.;Ram, G.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.3
    • /
    • pp.439-452
    • /
    • 2005
  • Zinc is ubiquitous in all living cells. Structural and catalytic properties of cellular enzymes are zinc dependent. Zinc deficiency leads to a variety of pathological abnormalities with immune impairment. It is an established fact that nutritional status contributes to overall immune response of individuals. Outcome of zinc deficiency on immune system is so drastic that it is difficult to conceive at the first instance. Zinc supplementation has been advocated to prevent diarrheal disease in children with poor nutritional status. The bioavailability of zinc depends upon its sources. Moreover it varies between monogastrics and ruminants. Controversy still prevails between inorganic and organic sources of zinc with respect to their superiority in bioavailability. Zinc exerts immunostimulatory effects in various laboratory and farm animals. Animals having congenital zinc deficiency diseases like A46 lethal trait usually die due to impairment of the immune system unless treated with zinc. The immune mechanism of zinc and its effect on animals and man are discussed. Zinc has been considered as extremely safe at higher therapeutic doses, but does not provide any beneficial effect but rather may cause immunosuppression. More recently, zinc has been prescribed for immunodeficient hosts, to modulate the immune system so that to a certain extent it can combat against opportunistic pathogens.

Effects of Different Intensities of Repeated Hypoxic Stress on Immune Functions in Mice (마우스에서 반복적 저산소 스트레스 정도에 따른 면역동성 효과)

  • 강동원;김건태;김동구
    • Toxicological Research
    • /
    • v.15 no.1
    • /
    • pp.27-34
    • /
    • 1999
  • To study the nature of differentially manifested adaptive response of an organism according to the intensities of the stress, the immune effects of different levels of repeated hypoxia were investigated. Four experimental groups (NH : not -handled, 20% : handled, 15% or 10% : exposed to 15% or 10% $\textrm{O}_2$ 씨오투 with balanced nitrogen, respectively) of mice were exposed to different levels of hypoxia for 60 min/day, 5days/week in a repeated and intermittent manner. After 8 weeks' exposure to hypoxia environment, mice were subjected to immune function measurements, A decreased proportion of CD3+ CD8 phenotype cells in the study of splenocyte subsets was observed in the 10% group. Ovalbumin-stimulated IgG2a production was increased in the 15% group, while no changes were noted in the IgGl and IgM production. No significant changes of the antigen-stimulated splenocyte proliferation and the natural killer cell cytotoxicity were found. These results show that the stress effects on the immune systems can be varied according to the strength of the stress and that a mild level of repeated hypoxic stress can enhance the immune function of mice in this experimental model.

  • PDF

A Study on Driving Control of an Autonomous Guided Vehicle using Humoral Immune Algorithm Adaptive PID Controller based on Neural Network Identifier Technique (신경회로망 동정기법에 기초한 HIA 적응 PID 제어기를 이용한 AGV의 주행제어에 관한 연구)

  • Lee Young Jin;Suh Jin Ho;Lee Kwon Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.65-77
    • /
    • 2004
  • In this paper, we propose an adaptive mechanism based on immune algorithm and neural network identifier technique. It is also applied fur an autonomous guided vehicle (AGV) system. When the immune algorithm is applied to the PID controller, there exists the case that the plant is damaged due to the abrupt change of PID parameters since the parameters are almost adjusted randomly. To solve this problem, we use the neural network identifier (NNI) technique fur modeling the plant and humoral immune algorithm (HIA) which performs the parameter tuning of the considered model, respectively. After the PID parameters are determined in this off-line manner, these gains are then applied to the plant for the on-line control using an immune adaptive algorithm. Moreover, even though the neural network model may not be accurate enough initially, the weighting parameters are adjusted to be accurate through the on-line fine tuning. Finally, the simulation and experimental result fur the control of steering and speed of AGV system illustrate the validity of the proposed control scheme. These results for the proposed method also show that it has better performance than other conventional controller design methods.

The Effects of Acute Osmotic Stress on Innate Immunity of Nile Tilapia (Oreochromis niloticus)

  • Choi, Sang-Hoon;Park, Kwan-Ha
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.343-349
    • /
    • 2010
  • The effects of osmotic stress on the non-specific immune response of Nile tilapia, Oreochromis niloticus, were investigated. Osmoregulatory mechanism of tilapia has been studied, but less information is available about innate immune response of O. niloticus faced with hyperosmolality. Acute osmotic stress was elicited by transferring tilapia from freshwater (FW) to 24 psu seawater (SW). Non-specific immune parameters including lysozyme activities of plasma and head kidney (HK), alternative complement pathway (ACP) activity in plasma, phagocytic capacities of spleen and HK immune cells, and respiratory burst activity of immune cells in both HK and spleen were analyzed. Lysozyme activities were increased at 1 h and 30 h after transfer to SW, but decreased at 10 h after SW transfer. Conversely, ACP activity increased 10 h after SW transfer. Phagocytic capacity increased slightly at 1 h and 5 h after SW transfer, and respiratory burst activity showed an increase in superoxide release at 10 h after SW transfer. Taken together, these results indicate that the exposure of tilapia to hyperosmotic conditions has immunostimulatory effects on cellular and humoral immune reactions.

An AGV Driving Control using immune Algorithm Adaptive Controller (면역알고리즘 적응 제어기를 이용한 AGV 주행제어에 관한 연구)

  • Lee, Yeong-Jin;Lee, Gwon-Sun;Lee, Jang-Myeong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.4
    • /
    • pp.201-212
    • /
    • 2000
  • In this paper, an adaptive mechanism based on immune algorithm is designed and it is applied for the autonomous guided vehicle(AGV) driving. When the immune algorithm is applied to the PID controller, there exists the cast that the plant is damaged due to the abrupt change of PID parameters since the parameters are adjusted almost randomly. To solve this problem, a neural network is used to model the plant and the parameter tuning of the model is performed by the immune algorithm. After the PID parameters are determined in this off-line manner, these gains are then applied to the plant for the on-line control using immune adaptive algorithm. Moreover, even though the neural network model may not be accurate enough intially, the weighting parameters are adjusted to be accurate through the on-line fine tuning. The computer simulation for the control of steering and speed of AGV is performed. The results show that the proposed controller has better performances than other conventional controllers.

  • PDF

A Study on Implementation of Immune Algorithm Adaptive Controller for AGV Driving Control (AGV의 주행 제어를 위한 면역 알고리즘 적응 제어기 실현에 관한 연구)

  • 이영진;이진우;손주한;이권순
    • Journal of Korean Port Research
    • /
    • v.14 no.2
    • /
    • pp.187-197
    • /
    • 2000
  • In this paper, an adaptive mechanism based on immune algorithm is designed and it is applied to the driving control of the autonomous guided vehicle(AGV). When the immune algorithm is applied to the PID controller, there exists the case that the plant is damaged by the abrupt change of PID parameters since the parameters are adjusted almost randomly. To solve this problem, a neural network used to model the plant and the parameter tuning of the model is performed by the immune algorithm. After the PID parameters are determined through this off-line manner, these parameters are then applied to the plant for the on-line control using immune adaptive algorithm. Moreover, even though the neural network model may not be accurate enough initially, the weighting parameters are adjusted more accurately through the on-line fine tuning. The experiment for the control of steering and speed of AGV is performed. The results show that the proposed controller provides better performances than other conventional controllers.

  • PDF