• Title/Summary/Keyword: Immune feedback response

Search Result 13, Processing Time 0.018 seconds

STUDIES ON IMMUNOTOXIC POTENTIAL OF METHAMPHETAMINE (MA) IN Balb/C MICE I. Changes of Lymphoid Organs and Inhibitory Effect of Lymphocyte Proliferation to Mitogen

  • Lim, Chae-Woong;Rim, Byung-Moo;Lee, Ho-Il;Kim, Sang-Ho
    • Toxicological Research
    • /
    • v.11 no.1
    • /
    • pp.9-14
    • /
    • 1995
  • The immune system is partially under the control of the sympathetic and parasymphathetic nervous systems through the regulatory feedback loop. Methamphetamine (MA) is a neurotoxic chemical which affects the neurotransmitter system. The objective of this study was to investigate the immunotoxic effect of MA on the major immune target organ and lymphocyte proliferation to the various mitogens. Female Balb/C mice, 15 to 20 g, were injected subcutaneously with 0, 0.5, or 5 mg MA/kg for 14 consecutive days. In MA treated mice, the body weight gain and relative spleen and thymus weight were decreased in doserelated manner. Histopathologically, there was a paucity of lymphold follicles and germinal centers in the spleen, and thymic cortical atrophy with lymphophagocytosis was prominent. Apoptosis also occurred in germinal centers of spleen and thymic cortex. The threshold and peak of lymphocyte proliferation at various concentration of mitogens showed similar patterns. However, the response to lipopolysaccaride (LPS) and pokeweed mitogen (PWM) in the 5 mg MA/kg treated group showed threshold and peak proliferation at high concentration of mitogens (25${\mu}g$ LPS/ml for MA vs 15${\mu}g$ LPS/ml for control; 60${\mu}g$ PWM/ml for MA vs 45${\mu}g$ PWM/ml for control), which suggest that MA impairs T cell dependent-B cell function. This preliminary study indicated that MA affected the lymphold organs and immune function.

  • PDF

Nucleopolyhedrovirus Induces Suppressor of Cytokine Signaling in the Beet Armyworm, Spodoptera exigua

  • Noh Mi-Young;Jo Yong-Hun;Kim Seon-Am;Lee Yong-Seok;Bang In-Seok;Kim Seon-Gon;Park Jong-Dae;Chun Jae-Sun;Seo Sook-Jae;Han Man-Deuk;Kim Ik-Soo;Han Yeon-Soo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.12 no.2
    • /
    • pp.63-67
    • /
    • 2006
  • Suppressor of cytokine signaling (SOCS) is known to playa key role as a negative feedback regulator in JAK/STAT signaling cascade in innate immunity. Our laboratory has recently been interested in elucidating the interactions between Spodoptera exigua (Se) and SeNPV. This context leads us to clone and characterize SeSOCS that may have important functions in response to SeNPV infection. Using the RT-PCR and TA cloning approach, we found a partial fragment (416 bp) of SeSOCS. Blast search and multiple alignment data showed that it has a homology to various insects such as Anopheles gambiae (78%), Aedes aegypti (75%), Drosophila melanogastar (77%), Mus musculus (69%), and Homo sapiens (69%). Temporal induction patterns of SeSOCS were analysed after being immune-challenged with either NPV or laminarin. It showed that the level of SeSOCS mRNA was strongly induced in a biphasic manner in response to SeNPV and laminarin, respectively. It seems that SOCS, a negative regulator of JAK/STAT signaling system is also present in S. exigua and may playa role in innate immunity albeit its precise role should be further elucidated at the molecular and cellular level in the early phase of SeNPV infection in larvae.

The Early Induction of Suppressor of Cytokine Signaling 1 and the Downregulation of Toll-like Receptors 7 and 9 Induce Tolerance in Costimulated Macrophages

  • Lee, Hyo-Ji;Kim, Keun-Cheol;Han, Jeong A;Choi, Sun Shim;Jung, Yu-Jin
    • Molecules and Cells
    • /
    • v.38 no.1
    • /
    • pp.26-32
    • /
    • 2015
  • Toll-like receptors (TLR) 7 and 9 transduce a cellular signal through the MyD88-dependent pathway and induce the production of inflammatory mediators against microbial nucleotide components. The repeated stimulation of TLR4 leads to endotoxin tolerance, but the molecular mechanisms of tolerance induced through the costimulation of individual TLR has not yet been established, although endosomal TLRs share signaling pathways with TLR4. In the present study, mouse macrophages were simultaneously stimulated with the TLR7 agonist, gardiquimod (GDQ), and the TLR9 agonist, CpG ODN 1826, to examine the mechanism and effector functions of macrophage tolerance. Compared with individual stimulation, the costimulation of both TLRs reduced the secretion of TNF-${\alpha}$ and IL-6 through the delayed activation of the NF-${\kappa}B$ pathway; notably, IL-10 remained unchanged in costimulated macrophages. This tolerance reflected the early induction of suppressor of cytokine signaling-1 (SOCS-1), according to the detection of elevated TNF-${\alpha}$ secretion and restored NF-${\kappa}B$ signaling in response to the siRNA-mediated abrogation of SOCS-1 signaling. In addition, the restimulation of each TLRs using the same ligand significantly reduced the expression of both TLRs in endosomes. These findings revealed that the costimulation of TLR7 and TLR9 induced macrophage tolerance via SOCS-1, and the restimulation of each receptor or both TLR7 and TLR9 downregulated TLR expression through a negative feedback mechanisms that protects the host from excessive inflammatory responses. Moreover, the insufficient and impaired immune response in chronic viral infection might also reflect the repeated and simultaneous stimulation of those endosomal TLRs.