• Title/Summary/Keyword: Immune dysregulation

Search Result 65, Processing Time 0.021 seconds

The Tumor Suppressor, p53, Negatively Regulates Non-Canonical NF-κB Signaling through miRNA-Induced Silencing of NF-κB-Inducing Kinase

  • Jang, Hanbit;Park, Seulki;Kim, Jaehoon;Kim, Jong Hwan;Kim, Seon-Young;Cho, Sayeon;Park, Sung Goo;Park, Byoung Chul;Kim, Sunhong;Kim, Jeong-Hoon
    • Molecules and Cells
    • /
    • v.43 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • NF-κB signaling through both canonical and non-canonical pathways plays a central role in immune responses and inflammation. NF-κB-inducing kinase (NIK) stabilization is a key step in activation of the non-canonical pathway and its dysregulation implicated in various hematologic malignancies. The tumor suppressor, p53, is an established cellular gatekeeper of proliferation. Abnormalities of the TP53 gene have been detected in more than half of all human cancers. While the non-canonical NF-κB and p53 pathways have been explored for several decades, no studies to date have documented potential cross-talk between these two cancer-related mechanisms. Here, we demonstrate that p53 negatively regulates NIK in an miRNA-dependent manner. Overexpression of p53 decreased the levels of NIK, leading to inhibition of the non-canonical NF-κB pathway. Conversely, its knockdown led to increased levels of NIK, IKKα phosphorylation, and p100 processing. Additionally, miR-34b induced by nutlin-3 directly targeted the coding sequences (CDS) of NIK. Treatment with anti-miR-34b-5p augmented NIK levels and subsequent non-canonical NF-κB signaling. Our collective findings support a novel cross-talk mechanism between non-canonical NF-κB and p53.

Systematic review of literature and analysis of big data from the National Health Insurance System on primary immunodeficiencies in Korea

  • Son, Sohee;Kang, Ji-Man;Hahn, Younsoo;Ahn, Kangmo;Kim, Yae-Jean
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.4
    • /
    • pp.141-148
    • /
    • 2021
  • There are very scant data on the epidemiology of primary immunodeficiency diseases (PIDs) in Korea. Here we attempted to estimate the PID epidemiology and disease burden in Korea. A systematic review was performed of studies retrieved from the PubMed, KoreaMed, and Google Scholar databases. Studies on PIDs published in Korean or English between January 2001 and November 2018 were analyzed. The number of PID patients and the healthcare costs were estimated from Health Insurance Review and Assessment Service (HIRA) Korea data for 2017. A total of 398 PID patients were identified from 101 reports. Immunodeficiencies affecting cellular and humoral immunity were reported in 11 patients, combined immunodeficiency with associated or syndromic features in 40, predominantly antibody deficiencies in 144, diseases of immune dysregulation in 58, congenital defects of phagocytes in 104, defects in the intrinsic and innate immunity in 1, auto-inflammatory disorders in 4, complement deficiencies in 36, and phenocopies of PID in none. From the HIRA reimbursement data, a total of 1,162 outpatients and 306 inpatients were treated for 8,166 and 6,149 days, respectively. In addition, reimbursement was requested for 8,200 outpatient and 1,090 inpatient cases and $1,924,000 and $4,715,000 were reimbursed in 2017, respectively. This study systematically reviewed published studies on PID and analyzed the national open data system of the HIRA to estimate the disease burden of PID, for the first time in Korea.

Clinical spectrum and short-term outcomes of multisystem inflammatory syndrome in children in a south Indian hospital

  • Balagurunathan, Muruganantham;Natarajan, Thrilok;Karthikeyan, Jothilakshmi;Palanisamy, Venkateshwaran
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.10
    • /
    • pp.531-537
    • /
    • 2021
  • Background: Multisystem inflammatory syndrome in children (MIS-C) is a new hyperinflammatory variant that evolved during the coronavirus disease 2019 pandemic. Although the precise pathophysiology of MIS-C is uncertain, it is thought to be due to immune dysregulation occurring after recovery from acute infection. Purpose: Our study aimed to analyze the clinical spectrum, laboratory parameters, imaging characteristics, treatment strategies, and short-term outcomes of children with a diagnosis of MIS-C. Methods: This retrospective and prospective observational study included children less than 16 years of age who were admitted to the pediatric unit of a tertiary care teaching hospital in south India between August 2020 to January 2021 with a diagnosis of MIS-C according to World Health Organization criteria. Results: Twenty-one children were included in the analysis; all had fever with variable combinations of other symptoms. The mean age was 6.9 years; 71.4% were male. Gastrointestinal (80.9%) and cardiovascular (80.9%) systems were the most commonly affected. The majority of children had elevated inflammatory markers, and 16 (76.2%) had echocardiographic abnormalities mimicking Kawasaki disease. Eleven children (52.4%) required intensive care admission, 3 (14.3%) required supplemental oxygen, and 4 (19%) required inotropes. Nine (42.9%) were treated with intravenous immunoglobulin alone, 6 (28.6%) with steroids alone, and 3 (14.3%) with steroids and immunoglobulin. The median hospital stay was 6 days; there were no fatalities. Overweight/obesity, elevated ferritin, and mucocutaneous involvement were significantly associated with a prolonged hospital stay (≥7 days). Sixteen children (76.2%) were followed up till now and all of them had no clinical concerns. Conclusion: MIS-C is an emerging disease with variable presentation. A high index of suspicion is necessary for its early identification and appropriate management. Further research is essential for developing optimal treatment strategies.

Germinal Center Formation Controlled by Balancing Between Follicular Helper T Cells and Follicular Regulatory T Cells (여포 보조 T세포와 여포 조절 T세포의 균형 및 종자중심 형성)

  • Park, Hong-Jai;Kim, Do-Hyun;Choi, Je-Min
    • Hanyang Medical Reviews
    • /
    • v.33 no.1
    • /
    • pp.10-16
    • /
    • 2013
  • Follicular helper T cells (Tfh) play a significant role in providing T cell help to B cells during the germinal center reaction, where somatic hypermutation, affinity maturation, isotype class switching, and the differentiation of memory B cells and long-lived plasma cells occur. Antigen-specific T cells with IL-6 and IL-21 upregulate CXCR5, which is required for the migration of T cells into B cell follicles, where these T cells mature into Tfh. The surface markers including PD-1, ICOS, and CD40L play a significant role in providing T cell help to B cells. The upregulation of transcription factor Bcl-6 induces the expression of CXCR5, which is an important factor for Tfh differentiation, by inhibiting the expression of other lineage-specific transcription factors such as T-bet, GATA3, and RORγt. Surprisingly, recent evidence suggests that CD4 T cells already committed to Th1, Th2, and Th17 cells obtain flexibility in their differentiation programs by downregulating T-bet, GATA3, and RORγt, upregulating Bcl-6 and thus convert into Tfh. Limiting the numbers of Tfh within germinal centers is important in the regulation of the autoantibody production that is central to autoimmune diseases. Recently, it was revealed that the germinal center reaction and the size of the Tfh population are also regulated by thymus-derived follicular regulatory T cells (Tfr) expressing CXCR5 and Foxp3. Dysregulation of Tfh appears to be a pathogenic cause of autoimmune disease suggesting that tight regulation of Tfh and germinal center reaction by Tfr is essential for maintaining immune tolerance. Therefore, the balance between Tfh and Tfr appears to be a critical peripheral tolerance mechanism that can inhibit autoimmune disorders.

Primary Immunodeficiencies in Children Initially Admitted with Gastrointestinal/Liver Manifestations

  • Murat Cakir ;Nalan Yakici ;Elif Sag ;Gulay Kaya ;Aysenur Bahadir;Alper Han Cebi ;Fazil Orhan
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.26 no.4
    • /
    • pp.201-212
    • /
    • 2023
  • Purpose: The gastrointestinal system is the most commonly affected organ, followed by the lungs, in patients with primary immunodeficiency disease (PID). Hence, it is common for children with PIDs to present with gastrointestinal symptoms. We aimed to analyze the clinical and histopathological findings of patients who were initially admitted to pediatric gastroenterology/hepatology clinics and subsequently diagnosed with PIDs to identify the clinical clues for PIDs. Methods: The demographic, laboratory, and histopathological findings, treatment modality, and outcomes of patients initially admitted to the pediatric gastroenterology/hepatology unit and subsequently diagnosed with PIDs were recorded. Results: The study included 24 patients (58.3% male; median age [range]: 29 [0.5-204] months). Common clinical presentations included chronic diarrhea (n=8), colitis (n=6), acute hepatitis (n=4), and acute liver failure (n=2). The association of autoimmune diseases, development of malignant diseases, and severe progression of viral diseases was observed in 20.8%, 8.3%, and 16.6% of the patients, respectively. Antibody deficiency was predominantly diagnosed in 29.2% of patients, combined immunodeficiency in 20.8%, immune dysregulation in 12.5%, defects in intrinsic and innate immunity in 4.2%, autoinflammatory disorders in 8.3%, and congenital defects of phagocytes in 4.2%. Five patients remained unclassified (20.8%). Conclusion: Patients with PIDs may initially experience gastrointestinal or liver problems. It is recommended that the association of autoimmune or malignant diseases or severe progression of viral diseases provide pediatric gastroenterologists some suspicion of PIDs. After screening using basic laboratory tests, genetic analysis is mandatory for a definitive diagnosis.

Lactic Acid Bacteria Isolated from Human Breast Milk Improve Colitis Induced by 2,4,6-Trinitrobenzene Sulfonic Acid by Inhibiting NF-κB Signaling in Mice

  • Kyung-Joo Kim;Suhyun Kyung;Hui Jin;Minju Im;Jae-won Kim;Hyun Su Kim;Se-Eun Jang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.1057-1065
    • /
    • 2023
  • Inflammatory bowel disease (IBD), a chronic inflammatory disease, results from dysregulation of the immune responses. Some lactic acid bacteria (LAB), including Lactobacillus, alleviate IBD through immunomodulation. In this study, the anti-colitis effect of LAB isolated from human breast milk was investigated in a mouse model induced acute colitis with 2,4,6-trinitrobenzene sulfonic acid (TNBS). TNBS remarkably increased weight loss, colon shortening, and colonic mucosal proliferation, as well as the expression levels of inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-1β. Oral administration of LAB isolated from human breast milk resulted in a reduction in TNBS-induced colon shortening, as well as induced cyclooxygenase (COX)-2, nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-κB). In addition, LAB suppressed inflammatory cytokines such as TNF-α, IL-6, and IL-1β, and thus showed an effect of suppressing the level of inflammation induced by TNBS. Furthermore, LAB alleviated gut microbiota dysbiosis, and inhibited intestinal permeability by increasing the expression of intestinal tight junction protein including ZO-1. Collectively, these results suggest that LAB isolated from human breast milk can be used as a functional food for colitis treatment by regulating NF-κB signaling, gut microbiota and increasing expression of intestinal tight junction protein.

Cisd2 deficiency impairs neutrophil function by regulating calcium homeostasis via Calnexin and SERCA

  • Un Yung Choi;Youn Jung Choi;Shin-Ae Lee;Ji-Seung Yoo
    • BMB Reports
    • /
    • v.57 no.5
    • /
    • pp.256-261
    • /
    • 2024
  • In the context of aging, the susceptibility to infectious diseases increases, leading to heightened morbidity and mortality. This phenomenon, termed immunosenescence, is characterized by dysregulation in the aging immune system, including abnormal alterations in lymphocyte composition, elevated basal inflammation, and the accumulation of senescent T cells. Such changes contribute to increased autoimmune diseases, enhanced infection severity, and reduced responsiveness to vaccines. Utilizing aging animal models becomes imperative for a comprehensive understanding of immunosenescence, given the complexity of aging as a physiological process in living organisms. Our investigation focuses on Cisd2, a causative gene for Wolfram syndrome, to elucidate on immunosenescence. Cisd2 knockout (KO) mice, serving as a model for premature aging, exhibit a shortened lifespan with early onset of aging-related features, such as decreased bone density, hair loss, depigmentation, and optic nerve degeneration. Intriguingly, we found that the Cisd2 KO mice present a higher number of neutrophils in the blood; however, isolated neutrophils from these mice display functional defects. Through mass spectrometry analysis, we identified an interaction between Cisd2 and Calnexin, a protein known for its role in protein quality control. Beyond this function, Calnexin also regulates calcium homeostasis through interaction with sarcoendoplasmic reticulum calcium transport ATPase (SERCA). Our study proposes that Cisd2 modulates calcium homeostasis via its interaction with Calnexin and SERCA, consequently influencing neutrophil functions.

Trypanosoma cruzi Dysregulates piRNAs Computationally Predicted to Target IL-6 Signaling Molecules During Early Infection of Primary Human Cardiac Fibroblasts

  • Ayorinde Cooley;Kayla J. Rayford;Ashutosh Arun;Fernando Villalta;Maria F. Lima;Siddharth Pratap;Pius N. Nde
    • IMMUNE NETWORK
    • /
    • v.22 no.6
    • /
    • pp.51.1-51.20
    • /
    • 2022
  • Trypanosoma cruzi, the etiological agent of Chagas disease, is an intracellular protozoan parasite, which is now present in most industrialized countries. About 40% of T. cruzi infected individuals will develop severe, incurable cardiovascular, gastrointestinal, or neurological disorders. The molecular mechanisms by which T. cruzi induces cardiopathogenesis remain to be determined. Previous studies showed that increased IL-6 expression in T. cruzi patients was associated with disease severity. IL-6 signaling was suggested to induce pro-inflammatory and pro-fibrotic responses, however, the role of this pathway during early infection remains to be elucidated. We reported that T. cruzi can dysregulate the expression of host PIWI-interacting RNAs (piRNAs) during early infection. Here, we aim to evaluate the dysregulation of IL-6 signaling and the piRNAs computationally predicted to target IL-6 molecules during early T. cruzi infection of primary human cardiac fibroblasts (PHCF). Using in silico analysis, we predict that piR_004506, piR_001356, and piR_017716 target IL6 and SOCS3 genes, respectively. We validated the piRNAs and target gene expression in T. cruzi challenged PHCF. Secreted IL-6, soluble gp-130, and sIL-6R in condition media were measured using a cytokine array and western blot analysis was used to measure pathway activation. We created a network of piRNAs, target genes, and genes within one degree of biological interaction. Our analysis revealed an inverse relationship between piRNA expression and the target transcripts during early infection, denoting the IL-6 pathway targeting piRNAs can be developed as potential therapeutics to mitigate T. cruzi cardiomyopathies.

Aged Sanroque Mice Spontaneously Develop Sjögren's Syndrome-like Disease

  • Suk San Choi;Eunkyeong Jang;Yeon-Kyung Oh;Kiseok Jang;Mi-La Cho;Sung-Hwan Park;Jeehee Youn
    • IMMUNE NETWORK
    • /
    • v.19 no.1
    • /
    • pp.7.1-7.11
    • /
    • 2019
  • Sjögren's syndrome (SS) is a chronic inflammatory autoimmune disorder that affects mainly salivary and lacrimal glands, but its cause remains largely unknown. Clinical data indicating that SS occurs in a substantial proportion of patients with lupus points to common pathogenic mechanisms underlying the two diseases. To address this idea, we asked whether SS develops in the lupus-prone mouse strain sanroque (SAN). Owing to hyper-activation of follicular helper T (Tfh) cells, female SAN mice developed lupus-like symptoms at approximately 20 wk of age but there were no signs of SS at that time. However, symptoms typical of SS were evident at approximately 40 wk of age, as judged by reduced saliva flow rate, sialadenitis, and IgG deposits in the salivary glands. Increases in serum titers of SS-related autoantibodies and numbers of autoantibody-secreting cells in cervical lymph nodes (LNs) preceded the pathologic manifestations of SS and were accompanied by expansion of Tfh cells and their downstream effector cells. Thus, our results suggest that chronic dysregulation of Tfh cells in salivary gland-draining LNs is sufficient to drive the development of SS in lupus-prone mice.

Immune-alteration Demonstrated at the Korean Vietnam War Veterans Exposed to Agent Orange (2,3,7,8-tetrachlorodibenzo-p-dioxin 노출과 관련한 인체면역기능 변화를 판단할 수 있는 지표치 개발에 관한 연구)

  • Heo, Yong;Kim, Eun-Mi;Yu, Ji-Yeon;Hong, Seung-Kwon;Jeon, Seong-Hoon;Kim, Hyoung-Ah;Cho, Dae-Hyun;Han, Soon-Young
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.2
    • /
    • pp.112-124
    • /
    • 2002
  • 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been reported to exert detrimental toxicities on various organ systems including reproductive, cardiovascular, nervous, or dermal system. Immunomodulatory effects of TCDD is thymic atrophy, downregulation of cytotoxic T or B lymphocyte differentiation and activation, which were demonstrated using experimental animals, whereas immunotoxicity in human has not been investigated well. This study was proceeded to evaluate general immunologic spectrum of the Korean Vietnam War veterans exposed to TCDD during their operation, and compare with that of the non-exposed control subjects with similar age. Regarding composition and quantity, immune cells in peripheral blood collected from the TCDD-exposed was not much different from those of the control except decreased red blood cell, hemoglobin and hematocrit level. Furthermore, plasma IgG2, G3, and G4 isotype distribution was similar between two groups, but IgG1 level was significantly lowered in the TCDD-exposed, indicating a TCDD-mediated functional alteration of B cells. Significantly enhanced level of IgE in plasma, a hallmark of dermal or respiratory allergic response, was also observed in the TCDD-exposed compared with that of the control. Elevated generation of IL-4 and IL-10 was resulted from in vitro stimulation of T cells with PMA plus ionomycin or PHA, respectively, from the TCDD-exposed in comparison to those of the control, suggesting a skewed type-2 response. In addition, the level of IFN${\gamma}$, a multifunctional cytokine for T cell-mediated immunity, was lowered in the TCDD-exposed with upregulation of tumor necrosis factor $\alpha$. The present study suggests that TCDD exposure disturbs immunohomeostasis in humans observed as an aberrant plasma IgE and IgG1 levels and dysregulation of T cell activities.

  • PDF