• Title/Summary/Keyword: Immune disease

Search Result 1,489, Processing Time 0.024 seconds

Cloning and expression of Streptococcus mutans GS-5 glucosyltransferase (Streptococcus mutans GS-5 Glucosyltransferase의 클로닝과 발현)

  • Kim, Su-Kyeong;Kim, Jae-Gon;Baik, Byeong-Ju;Yang, Yeon-Mi;Lee, Kyung-Yeol;Park, Jeong-Yeol
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.1
    • /
    • pp.73-82
    • /
    • 2008
  • Dental caries is an infectious disease caused by mutans streptococci, and is a primary etiologic agent of dental caries in humans. The molecular pathogenesis of mutans streptococcal-associated dental caries occurs in three phases. Firstly, S. mutans attaches to tooth surface via a cell surface adhesion termed antigen I/II. In the second phase, the glucosyltransferase(GTFs) synthesize polymers like glucans in the presence of sucrose. In the third phase, the multivalent glucans interacts with glucan binding proteins (GBPs) and they make dental plaque and accumulation of microorganisms. Many studies and clinical trials have indicated that a mucosal immune response to these antigens(Ag I/II, GTFs, GBPs) of S. mutans can influence the pathogenesis of dental caries. So these antigens can be important vaccine candidates for immunologic intervention against dental caries. In this study, we cloned the genes for GTFb, GTFc, GTFd from S. mutans GS-5 and did the nucleotide sequence analysis. And the recombinant proteins of GTFd and N-terminus of GTFd were expressed. Intact GTF which we get from this experiment can be used for antibody production specific for any GTF activity domain through animal experiment.

  • PDF

Adequate concentration of B cell leukemia/lymphoma 3 (Bcl3) is required for pluripotency and self-renewal of mouse embryonic stem cells via downregulation of Nanog transcription

  • Kang, Songhwa;Yun, Jisoo;Kim, Da Yeon;Jung, Seok Yun;Kim, Yeon Ju;Park, Ji Hye;Ji, Seung Taek;Jang, Woong Bi;Ha, Jongseong;Kim, Jae Ho;Baek, Sang Hong;Kwon, Sang-Mo
    • BMB Reports
    • /
    • v.51 no.2
    • /
    • pp.92-97
    • /
    • 2018
  • B cell leukemia/lymphoma 3 (Bcl3) plays a pivotal role in immune homeostasis, cellular proliferation, and cell survival, as a co-activator or co-repressor of transcription of the $NF-{\kappa}B$ family. Recently, it was reported that Bcl3 positively regulates pluripotency genes, including Oct4, in mouse embryonic stem cells (mESCs). However, the role of Bcl3 in the maintenance of pluripotency and self-renewal activity is not fully established. Here, we report the dynamic regulation of the proliferation, pluripotency, and self-renewal of mESCs by Bcl3 via an influence on Nanog transcriptional activity. Bcl3 expression is predominantly observed in immature mESCs, but significantly decreased during cell differentiation by LIF depletion and in mESC-derived EBs. Importantly, the knockdown of Bcl3 resulted in the loss of self-renewal ability and decreased cell proliferation. Similarly, the ectopic expression of Bcl3 also resulted in a significant reduction of proliferation, and the self-renewal of mESCs was demonstrated by alkaline phosphatase staining and clonogenic single cell-derived colony assay. We further examined that Bcl3-mediated regulation of Nanog transcriptional activity in mESCs, which indicated that Bcl3 acts as a transcriptional repressor of Nanog expression in mESCs. In conclusion, we demonstrated that a sufficient concentration of Bcl3 in mESCs plays a critical role in the maintenance of pluripotency and the self-renewal of mESCs via the regulation of Nanog transcriptional activity.

Flavonoid Luteolin Inhibits LPS-induced Type I Interferon in Primary Macrophages (플라보노이드 루테올린의 lippopolysacharide로 유도한 type 1 interferon 억제 효과)

  • Jung, Won-Seok;Bae, Gi-Sang;Cho, Chang-Re;Park, Kyoung-Chel;Koo, Bon-Soon;Kim, Min-Sun;Ham, Kyung-Wan;Jo, Beom-Yeon;Cho, Gil-Hwan;Seo, Sang-Wan;Lee, Si-Woo;Song, Ho-Joon;Park, Sung-Joo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.5
    • /
    • pp.986-992
    • /
    • 2009
  • Type I interferons (IFNs) are critical mediators of the innate immune system to defend viral infection. Interferon regulatory factor (IRF) and signal transducer and activator of transcription (STAT) play critical roles in type I IFN production in response to viral infection. Luteolin is natural polyphenolic compounds that have anti-inflammatory, cytoprotective and anti-carcinogenic effects. However, the mechanism of action and impact of luteolin on innate immunity is still unknown. In this study, we examined the effects of luteolin on the lipopolysacchride (LPS)-induced inflammatory responses. Luteolin inhibited Type I IFNs expression of mRNA and increased interleukin(IL)-10 expression of mRNA. Next, we examined the protective effects of IL-10 using IL-10 neutralizing antibody (IL-10NA). Blockade of IL-10 action didn't cause a significant reduction of Type I IFNs than LPS-induced luteolin pretreatment. Pretreatment of luteolin inhibited the level of IRF-1, and IRF-7 mRNA and the nuclear translocation of IRF-3. Also, luteolin reduced the activation of STAT - 1, 3. Theses results suggest that luteolin inhibits LPS-induced the production of Type I IFNS by both IRFs and STATs not IL-10 and may be a beneficial drug for the treatment of inflammatory disease.

The Influence of the Sympathetic Nervous System on the Development and Progression of Cancer (교감신경계가 암의 발전과 진행에 미치는 영향)

  • Park, Shin-Hyung;Chi, Gyoo-Yong;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.116-129
    • /
    • 2018
  • Living creatures possess long-conserved mechanisms to maintain homeostasis in response to various stresses. However, chronic and continuous exposure to stress can result in the excessive production of stress hormones, including catecholamines, which have harmful effects on health. Studies on the relationship between the sympathetic nervous system (SNS) and cancer have been conducted based on the traditional hypothesis that stress can promote cancer progression. Many preclinical and epidemiological studies have suggested that the regulation of ${\beta}$-adrenergic signaling, which mediates SNS activity, can suppress the progression of solid tumors. SNS activation has highly pleiotropic effects on tumor biology, as it stimulates oncogenes, survival pathways, the epithelial - mesenchymal transition, and invasion. Moreover, it inhibits DNA repair and programmed cell death and regulates the tumor microenvironment, including immune cells, endothelial cells, the extracellular matrix, mesenchymal cells, and adipocytes. Although targeted therapies on the molecular basis of tumor proliferation are currently receiving increased attention, they have clinical limitations, such as the compensatory activation of other signaling pathways, emergence of drug resistance, and various side effects, which raise the need for pleiotropic cancer regulation. This review summarizes the effects of the SNS on the development and progression of cancer and discusses the clinical perspectives of ${\beta}$-blockade as a novel therapeutic strategy for this disease.

The Anti-obesity Effect of Aureobasidium pullulans SM-2001 Extract (Polycan®) on 3T3-L1 Preadipocytes and Adipocytes (3T3-L1세포에서 흑효모 SM-2001 추출물(Polycan®)의 항비만 효과)

  • Kim, Young-Suk;Lim, Jong-Min;Ku, Bon-Hwa;Moon, Seung-Bae;Cho, Hyung-Rae;Lee, Seon-Min;Kwon, Jung-Hee
    • Journal of Life Science
    • /
    • v.30 no.10
    • /
    • pp.835-843
    • /
    • 2020
  • Obesity, the world's leading metabolic disease, is a serious health problem in both industrialized and developing countries. Natural substances are of great interest in preventative medicine, especially in the field of metabolic syndromes-from insulin resistance to obesity and diabetes. In the present study, we investigated the effect of A. pullulans SM-2001 Extract (Polycan®) on the adipocyte differentiation of 3T3-L1 preadipocytes and the anti-obesity effect of 3T3-L1 adipocytes. Although β-glucan has been found to have health benefits in the regulation of the immune system and blood cholesterol levels, its role in obesity has not been fully investigated. Polycan® suppressed lipid accumulation and glycerol-3-phosphate dehydrogenase (GPDH) activity without affecting cell viability in 3T3-L1 preadipocytes and adipocytes. Polycan® also inhibited cellular lipid accumulation through down-regulation of transcription factors, such as PPARγ and C/EBPα, and induced dose-dependent phosphorylation of AMP-activated protein kinase (AMPK)-a cellular energy sensor-while the total AMPK protein content remained unchanged. Taken together, this shows that the activation of AMPK by Polycan® in adipocytes plays a critical role in Polycan®-induced inhibition of adipocyte differentiation. Our results show that Polycan® has an anti-obesity action in vitro, suggesting a potential novel preventative agent for obesity and other metabolic diseases.

A LysM Domain-Containing Protein LtLysM1 Is Important for Vegetative Growth and Pathogenesis in Woody Plant Pathogen Lasiodiplodia theobromae

  • Harishchandra, Dulanjalee Lakmali;Zhang, Wei;Li, Xinghong;Chethana, Kandawatte Wedaralalage Thilini;Hyde, Kevin David;Brooks, Siraprapa;Yan, Jiye;Peng, Junbo
    • The Plant Pathology Journal
    • /
    • v.36 no.4
    • /
    • pp.323-334
    • /
    • 2020
  • Lysin motif (LysM) proteins are reported to be necessary for the virulence and immune response suppression in many herbaceous plant pathogens, while far less is documented in woody plant pathogens. In this study, we preliminarily characterized the molecular function of a LysM protein LtLysM1 in woody plant pathogen Lasiodiplodia theobromae. Transcriptional profiles revealed that LtLysM1 is highly expressed at infectious stages, especially at 36 and 48 hours post inoculation. Amino acid sequence analyses revealed that LtLysM1 was a putative glycoprotein with 10 predicted N-glycosylation sites and one LysM domain. Pathogenicity tests showed that overexpressed transformants of LtLysM1 displayed increased virulence on grapevine shoots in comparison with that of wild type CSS-01s, and RNAi transformants of LtLysM1 exhibited significantly decreased lesion length when compared with that of wild type CSS-01s. Moreover, LtLysM1 was confirmed to be a secreted protein by a yeast signal peptide trap assay. Transient expression in Nicotiana benthamiana together with protein immunoblotting confirmed that LtLysM1 was an N-glycosylated protein. In contrast to previously reported LysM protein Slp1 and OsCEBiP, LtLysM1 molecule did not interact with itself based on yeast two hybrid and co-immunoprecipitation assays. These results indicate that LtLysM1 is a secreted protein and functions as a critical virulence factor during the disease symptom development in woody plants.

Tissues Expression, Polymorphisms Identification of FcRn Gene and Its Relationship with Serum Classical Swine Fever Virus Antibody Level in Pigs

  • Liu, Yang;Wang, Chonglong;Liu, Zhengzhu;Xu, Jingen;Fu, Weixuan;Wang, Wenwen;Ding, Xiangdong;Liu, Jianfeng;Zhang, Qin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.8
    • /
    • pp.1089-1095
    • /
    • 2012
  • Neonatal Fc receptor (FcRn) gene encodes a receptor that binds the Fc region of monomeric immunoglobulin G (IgG) and is responsible for IgG transport and stabilization. In this report, the 8,900 bp porcine FcRn genomic DNA structure was identified and putative FcRn protein included 356 amino acids. Alignment and phylogenetic analysis of the porcine FcRn amino acid sequences with their homologies of other species showed high identity. Tissues expression of FcRn mRNA was detected by real time quantitative polymerase chain reaction (Q-PCR), the results revealed FcRn expressed widely in ten analyzed tissues. One single nucleotide polymorphism (SNP) (HQ026019:g.8526 C>T) in exon6 region of porcine FcRn gene was demonstrated by DNA sequencing analysis. A further analysis of SNP genotypes associated with serum Classical Swine Fever Virus antibody (anti-CSFV) concentration was performed in three pig populations including Large White, Landrace and Songliao Black pig (a Chinese indigenous breed). Our results of statistical analysis showed that the SNP had a highly significant association with the level of anti-CSFV antibody (At d 20; At d 35) in serum (p = 0.008; p = 0.0001). Investigation of expression and polymorphisms of the porcine FcRn gene will help us in further understanding the molecular basis of the antibody regulation pathway in the porcine immune response. All these results indicate that FcRn gene might be regarded as a molecular marker for genetic selection of anti-CSFV antibody level in pig disease resistance breeding programmes.

Tumorigenic Effects of Endocrine-Disrupting Chemicals are Alleviated by Licorice (Glycyrrhiza glabra) Root Extract through Suppression of AhR Expression in Mammalian Cells

  • Chu, Xiao Ting;Cruz, Joseph Dela;Hwang, Seong Gu;Hong, Heeok
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5117-5121
    • /
    • 2014
  • Endocrine-disrupting chemicals (EDCs) have been reported to interfere with estrogen signaling. Exposure to these chemicals decreases the immune response and causes a wide range of diseases in animals and humans. Recently, many studies showed that licorice (Glycyrrhiza glabra) root extract (LRE) commonly called "gamcho" in Korea exhibits antioxidative, chemoprotective, and detoxifying properties. This study aimed to investigate the mechanism of action of LRE and to determine if and how LRE can alleviate the toxicity of EDCs. LRE was prepared by vacuum evaporation and freeze-drying after homogenization of licorice root powder that was soaked in 80% ethanol for 72 h. We used 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as an EDC, which is known to induce tumors or cancers; MCF-7 breast cancer cells were used as a tumorigenic model. These were treated with TCDD and various concentrations of LRE (0, 50, 100, 200, $400{\mu}g/mL$) for 24, 48, and 72 h. As a result, TCDD stimulated MCF-7 cell proliferation, but LRE significantly inhibited TCDD-induced MCF-7 cell proliferation in a dose- and time-dependent manner. Expression of TCDD toxicity-related genes, i.e., aryl hydrocarbon receptor (AhR), AhR nuclear translocator, and cytochrome P450 1A1, were subsequently down-regulated by LRE in a dose-dependent manner. Analysis of cell cycle distribution after treatment of MCF-7 cells with TCDD and various concentrations of LRE showed that LRE inhibited the proliferation of MCF-7 cells via G2/M phase arrest. Reverse transcription-polymerase chain reaction and Western blot analyses also revealed that LRE dose-dependently increased the expression of the tumor suppressor genes p53 and p27 and down-regulated the expression of cell cycle-related genes. These data suggest that LRE can mitigate the tumorigenic effects of TCDD in breast cancer cells by suppression of AhR expression and cell cycle arrest. Thus, LRE can be used as a potential toxicity-alleviating agent against EDC-mediated disease.

In silico Design of Discontinuous Peptides Representative of B and T-cell Epitopes from HER2-ECD as Potential Novel Cancer Peptide Vaccines

  • Manijeh, Mahdavi;Mehrnaz, Keyhanfar;Violaine, Moreau;Hassan, Mohabatkar;Abbas, Jafarian;Mohammad, Rabbani
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5973-5981
    • /
    • 2013
  • At present, the most common cause of cancer-related death in women is breast cancer. In a large proportion of breast cancers, there is the overexpression of human epidermal growth factor receptor 2 (HER2). This receptor is a 185 KDa growth factor glycoprotein, also known as the first tumor-associated antigen for different types of breast cancers. Moreover, HER2 is an appropriate cell-surface specific antigen for passive immunotherapy, which relies on the repeated application of monoclonal antibodies that are transferred to the patient. However, vaccination is preferable because it would stimulate a patient's own immune system to actively respond to a disease. In the current study, several bioinformatics tools were used for designing synthetic peptide vaccines. PEPOP was used to predict peptides from HER2 ECD subdomain III in the form of discontinuous-continuous B-cell epitopes. Then, T-cell epitope prediction web servers MHCPred, SYFPEITHI, HLA peptide motif search, Propred, and SVMHC were used to identify class-I and II MHC peptides. In this way, PEPOP selected 12 discontinuous peptides from the 3D structure of the HER2 ECD subdomain III. Furthermore, T-cell epitope prediction analyses identified four peptides containing the segments 77 (384-391) and 99 (495-503) for both B and T-cell epitopes. This work is the only study to our knowledge focusing on design of in silico potential novel cancer peptide vaccines of the HER2 ECD subdomain III that contain epitopes for both B and T-cells. These findings based on bioinformatics analyses may be used in vaccine design and cancer therapy; saving time and minimizing the number of tests needed to select the best possible epitopes.

A Case Report: Limitation of Mouth Opening in Dermatomyositis (개구장애를 동반한 피부근염 환자 증례)

  • Kim, Hye-Kyung;Kim, Ki-Suk;Kim, Mee-Eun
    • Journal of Oral Medicine and Pain
    • /
    • v.35 no.2
    • /
    • pp.155-163
    • /
    • 2010
  • Dermatomyositis (DM) is an idiopathic inflammatory connective tissue disorder and a systemic autonomic immune disease which shows a progressive muscle weakness and characteristic rash. It is identified by a characteristic rash accompanying, or more often preceding muscle weakness. Pathognomonic skin lesions are a blue-purple discoloration on the upper eyelids with edema (heliotropic rash), a flat red rash on the face and upper trunk, and erythema of the knuckles with a raised violaceous scaly eruption (Gottron's papule). The myopathy represents inflammatory and degenerative changes primarily affecting proximal muscles. DM often involves GI tract and respiratory system with as risk of 15-25% internal malignancy. It's managed with sun protection since muscle weakness as well as a rash could be aggravated by sun exposure. Systemic corticosteroid is an initial therapy and other immunosuppressive agent has been used as alternatives. Facial muscles are unaffected and masticatory muscles are rarely affected in DM. We present trismus close to muscle contracture in a patient with DM. Therefore, it needs continuous mouth-opening exercise to prevent progressive muscle contracture and to ensure normal mouth opening.