• 제목/요약/키워드: Immune building

검색결과 40건 처리시간 0.023초

The Effects of Volatile Organic Compounds on Apoptosis of Human Neutrophils and Eosinophils

  • Yang, Eun-Ju;Kim, In-Sik
    • 대한의생명과학회지
    • /
    • 제16권2호
    • /
    • pp.123-126
    • /
    • 2010
  • Volatile organic compounds are commonly off gassed from various building materials and can induce sick building syndrome. Volatile organic compounds such as formaldehyde, xylene and toluene are known as toxic agents in immune cells. Human leukocytes, particularly, neutrophils and eosinophils play important roles in the regulation of immune responses. In this study, we investigated the toxic effects of formaldehyde, ortho-xylene (o-xylene), para-xylene (p-xylene) and toluene on the apoptosis of neutrophils and eosinophils isolated from the blood of healthy donors. Formaldehyde increased the constitutive apoptosis of neutrophils and eosinophils. o-xylene, p-xylene and toluene increased the spontaneous apoptosis of eosinophils, but not that of neutrophils. Formaldehyde increased the protein level of IL-8 in neutrophils and eosinophils, and suppressed the MCP-1 expression in neutrophils. The release of IL-6 from neutrophils was diminished by volatile organic compounds used in this study. In conclusion, formaldehyde, xylene and toluene elevate the apoptosis of neutrophils and eosinophils, and regulate the release of cytokine and chemokine in neutrophils and eosinophils. These results indicate that formaldehyde, xylene and toluene have a cytotoxicity in human neutrophils and eosinophils and may damage the modulation of immune responses.

An Application of Negative Selection Process to Building An Intruder Detection System

  • Kim, Jung W.;Park, Jong-Uk
    • 한국정보보호학회:학술대회논문집
    • /
    • 한국정보보호학회 2001년도 종합학술발표회논문집
    • /
    • pp.147-152
    • /
    • 2001
  • This research aims to unravel the significant features of the human immune system, which would be successfully employed for a novel network intrusion detection model. Several salient features of the human immune system, which detects intruding pathogens, are carefully studied and the possibility and the advantages of adopting these features for network intrusion detection are reviewed and assessed.

  • PDF

Ambient Vibration-Measurement of Real Building Structure by Using Fiber Optic Accelerometer System

  • Kim, Dae-Hyun
    • 비파괴검사학회지
    • /
    • 제26권6호
    • /
    • pp.373-379
    • /
    • 2006
  • Vibration-based structural health monitoring is one of non-destructive evaluation (NDE) techniques for civil infrastructures. This paper presents a novel fiber optic accelerometer system to monitor civil engineering structures and a successful application of the novel sensor system for measuring ambient vibration of a real building structure. This sensor system integrates the Moire fringe phenomenon with fiber optics to achieve accurate and reliable measurements. The sensor system is immune to electromagnetic (EM) interference making it suitable for difficult applications in such environments involving strong EM fields, electrical spark-induced explosion risks, and cabling problems, prohibiting the use of conventional electromagnetic accelerometers. A prototype sensor system has been developed, together with a signal processing software. The experimental studies demonstrated the high-performance of the fiber optic sensor system. Especially, the sensor was successfully used for monitoring a real building on UCI (University of California Irvine, USA).

실험쥐를 통한 노출 콘크리트의 실내 유해성 평가 (Risk Assessment of Indoor Exposed Concrete by ICR Experiment)

  • 박동천;오유경
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 추계 학술논문 발표대회
    • /
    • pp.151-152
    • /
    • 2018
  • The purpose of this study was to find out harmful effects of concrete, an essential material in modern architecture, on the human body. Based on the results from animal testing, we can consider the effects on the human body. The results of this study were as follows; Experimental Mouses in concrete have low body temperature due to cold radiation and more aggressive due to cold stress. Therefore, Cold radiation, a property of concrete, makes body temperature lower and affect the body's immune function.

  • PDF

Prosuction of Cytokine and NO by RAW 264.7 Macrophages and PBMC In Vitro Incubation with Flavonoids

  • Lyu, Su-Yun;Park, Won-Bong
    • Archives of Pharmacal Research
    • /
    • 제28권5호
    • /
    • pp.573-581
    • /
    • 2005
  • Flavonoids, a group of low molecular weight phenylbenzopyrones, have various pharmacological properties including antioxidant activity, anticancer, and immunomodulatory effects. In the present study, lipopolysaccharide (LPS) and phorbol 12-myristate 13-acetate/phytohemagglutinin (PMA/PHA) were used as stimulants for RAW 264.7 macrophages and human peripheral blood mononuclear cell (hPBMC), and tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-2 productions were measured. In addition, flavonoids were examined for their effects on LPS-induced NO production in RAW 264.7 macrophages. The results showed that all compounds were not strongly cytotoxic at the tested concentrations on hPBMC and RAW 264.7 macrophages. On immunomodulatory properties, catechin, epigallocatechin (EGC), naringenin, and fisetin repressed NO production and TNF-${\alpha}$ secretion. Furthermore, catechin, epigallocatechin gallate (EGCG), epicatechin (EC), luteolin, chrysin, quercetin, and galangin increased IL-2 secretion while EGC, apigenin, and fisetin inhibited the secretion. These results indicated that flavonoids have the capacity to modulate the immune response and have a potential anti-inflammatory activity. There was no obvious structure-activity relationship regard to the chemical composition of the flavonoids and their cell biological effects.

지진의 위험요인을 고려한 공동주택의 내진보강 우선순위 결정에 관한 연구 (A Study on Priority Determination of Seismic Reinforcement of Apartment Houses Considering Earthquake Risk Factors)

  • 한범진
    • 한국건축시공학회지
    • /
    • 제23권4호
    • /
    • pp.405-416
    • /
    • 2023
  • 최근 중국과 튀르키예에서 발생한 지진과 함께 세계 곳곳에서 지진으로 인한 피해가 발생하고 있으며, 그 피해의 정도 또한 매우 심각한 상황이다. 지진 활성단층에 위치한 우리나라도 더 이상 지진의 안전지대가 아니며, 지진에 대한 선제적 대응이 절대적으로 필요한 시점이다. 정부에서는 기존에 지어진 공공건축물에 대한 내진성능평가, 절차, 내진보강 방법 등을 마련하여 내진설계가 미흡한 시설물에 대한 내진보강을 추진하고 있다. 하지만 민간 소유의 아파트는 강제할 방법이 없고, 사전 연구와 가이드라인의 부족으로 국민 안전을 위한 선제적 조치가 매우 미흡한 실정이다. 국내 주거용 건축물의 약 48%가 30년 이상 된 노후 건축물이며, 그 중 공동주택은 80% 이상으로 그 심각성을 뒷받침하고 있다. 본 연구에서는 건축물의 내진설계 기준을 기반으로 지반 유형, 건물의 중요도, 노후도, 층수 등 공동주택의 내진보강을 위한 총 7개의 주요 영향 요인을 도출하고, 내진보강 우선순위를 보다 간결하고 효율적으로 결정할 수 있는 알고리즘을 제안하였다.

개별공간의 자외선 살균 시스템 (UV Immune System of Personalized Space)

  • 정기범;최상곤
    • 설비공학논문집
    • /
    • 제21권1호
    • /
    • pp.63-70
    • /
    • 2009
  • The air sterilization systems are investigated experimentally in this paper. The goal is to reduce bacteria, mold and viruses in office air by using a UV sterilizer installed inside a partition panel and wall-mounted unit. These systems allow occupants to turn the system on/off and to control the incoming air speed and direction. The partition air sterilization system conditions and sterilizes the air, and then delivers the clean air into the personal task area through the partition panels, which are connected to the pressurized under-floor plenum. Room air exits through the return grills mounted on the ceiling. The wall-mounted air sterilization system sterilizes the air, and then delivers the clean air to the personal task area from the wall. In this study a full-size experimental environment is established to investigate the immunization performance of these air sterilization systems. A typical office space scale is used in this study in order to find an optimal system to achieve a sterilized healthy micro-environment. Multiple system parameters, including volume flow rate and velocity of supplied air, were regulated during the experiments. The more air contact these air sterilization systems had, the better disinfection performance. Over 90% of eradication ratios were obtained by these two air sterilization systems. The results indicate that these systems can efficiently disinfect office air contamination.

항만하역장비용 직류전동기의 속도제어에 관한 연구 (A Study on DC Motor Speed Control for Building a Port Cargo Handling Equipment)

  • 안병원;박중순
    • 한국항만학회지
    • /
    • 제11권2호
    • /
    • pp.273-280
    • /
    • 1997
  • Recently the importance of the cargo handling equipments in a port has been increasing to get strong competition from other ports. Many ports are making efforts to modernize their cargo handling equipments. The kernel technology of such equipments is the speed control of DC motor which is used as an essential part of them. In this paper, we discuss the speed control of a DC motor as a basic work for building cargo handling equipments in a port. DC Motors are still widely used in industrial fields, as driving power motor for electrical fields. DC drives, being easy to control, are widely used in many variable-speed and position control drive system. Traditional analog control circuits used in such applications have many disadvantages. Complex control schemes are difficult to implement with analog components. All these factor and invention of the microprocessor has made it possible to use digital control circuits, using microprocessing system. These digital circuits have been found to be reliable, flexible, and also immune to noise. In this paper it presents the speed control of a SCR DC motor driver which using dual converter by 80c196kc microprocessor. We developed a thyristor power amplifier which does not cause damage thyristor because it is designed to prevent triggering the two SCRs in the same arm simultaneously. And it was analyzed voltage and currents wave at reactive load.

  • PDF

Evidence to Support the Therapeutic Potential of Bacteriophage Kpn5 in Burn Wound Infection Caused by Klebsiella pneumoniae in BALB/c Mice

  • Kumar, Seema;Harja, Kusum;Chhibber, Sanjay
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권5호
    • /
    • pp.935-941
    • /
    • 2010
  • The emergence of antibiotic-resistant bacterial strains is one of the most critical problems of modern medicine. Bacteriophages have been suggested as an alternative therapeutic agent for such bacterial infections. In the present study, we examined the therapeutic potential of phage Kpn5 in the treatment of Klebsiella pneumoniae B5055-induced burn wound infection in a mouse model. An experimental model of contact burn wound infection was established in mice employing K. pneumoniae B5055 to assess the efficacy of phage Kpn5 in vivo. Survival and stability of phage Kpn5 were evaluated in mice and the maximum phage count in various organs was obtained at 6 h and persisted until 36 h. The Kpn5 phage was found to be effective in the treatment of Klebsiella-induced burn wound infection in mice when phage was administered immediately after bacterial challange. Even when treatment was delayed up to 18 h post infection, when all animals were moribund, approximately 26.66% of the mice could be rescued by a single injection of this phage preparation. The ability of this phage to protect bacteremic mice was demonstrated to be due to the functional capabilities of the phage and not due to a nonspecific immune effect. The levels of pro-inflammatory cytokines (IL-$1{\beta}$ and TNF-${\alpha}$) and anti-inflammatory cytokines (IL-10) were significantly lower in sera and lungs of phage-treated mice than phage untreated control mice. The results of the present study bring out the potential of bacteriophage therapy as an alternate preventive approach to treat K. pneumoniae B5055-induced burn wound infections. This approach not only helps in the clearance of bacteria from the host but also protects against the ensuing inflammatory damage due to the exaggerated response seen in any infectious process.

Simple adaptive control of seismically excited structures with MR dampers

  • Amini, F.;Javanbakht, M.
    • Structural Engineering and Mechanics
    • /
    • 제52권2호
    • /
    • pp.275-290
    • /
    • 2014
  • In this paper, Simple Adaptive Control (SAC) method is used to mitigate the detrimental effects of earthquakes on MR-damper equipped structures. Acceleration Feedback (AF) is utilized since measuring the acceleration response of structures is known to be reliable and inexpensive. The SAC is simple, fast and as an adaptive control scheme, is immune against the effects of plant and environmental uncertainties. In the present study, in order to translate the desired control force into an applicable MR damper command voltage, a neural network inverse model is trained, validated and used through the simulations. The effectiveness of the proposed AF-based SAC control system is compared with optimal H2/LQG controllers through numerical investigation of a three-story model building. The results indicate that the SAC controller is substantially effective and reliable in both undamaged and damaged structural states, specifically in reducing acceleration responses of seismically excited buildings.