• Title/Summary/Keyword: Immune Challenge

Search Result 302, Processing Time 0.024 seconds

Effects of Dietary Additives and Early Feeding on Performance, Gut Development and Immune Status of Broiler Chickens Challenged with Clostridium perfringens

  • Ao, Z.;Kocher, A.;Choct, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.4
    • /
    • pp.541-551
    • /
    • 2012
  • The effects of dietary additives and holding time on resistance and resilience of broiler chickens to Clostridium perfringens challenge were investigated by offering four dietary treatments. These were a negative control (basal), a positive control (Zn-bacitracin) and two dietary additives, mannanoligosaccharides (MOS), and acidifier. Two holding times included (a) immediate access to feed and water post hatch (FED) and (b) access to both feed and water 48 h post hatch (HELD). Chicks fed Zn-bacitracin had no intestinal lesions attributed to necrotic enteritis (NE), whereas chicks fed both MOS or acidifier showed signs of NE related lesions. All dietary treatments were effective in reducing the numbers of C. perfringens in the ileum post challenge. The FED chicks had heavier body weight and numerically lower mortality. The FED chicks also showed stronger immune responses to NE challenge, showing enhanced (p<0.05) proliferation of T-cells. Early feeding of the MOS supplemented diet increased (p<0.05) IL-6 production. The relative bursa weight of the FED chicks was heavier at d 21 (p<0.05). All the additives increased the relative spleen weight of the HELD chicks at d 14 (p<0.05). The FED chicks had increased villus height and reduced crypt depth, and hence an increased villus/crypt ratio, especially in the jejunum at d 14 (p<0.05). The same was true for the HELD chicks given dietary additives (p<0.05). It may be concluded that the chicks with early access to dietary additives showed enhanced immune response and gut development, under C. perfringens challenge. The findings of this study shed light on managerial and nutritional strategies that could be used to prevent NE in the broiler industry without the use of in-feed antibiotics.

Isotyping of Immunoglobulin G Responses of Ruminants and Mice to Live and Inactivated Antigens of Cowdria ruminantium the Causative Agent of Cowdriosis in Ruminants

  • Kibor, A.C.;Sumption, K.J.;Paxton, E.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.4
    • /
    • pp.541-548
    • /
    • 2003
  • The Immunoglobulin $IgG_1$ and $IgG_2$ isotype immune responses of domestic ruminants and mice to Cowdria. ruminantium live infection or by immunization with inactivated organisms were determined by the enzyme linked immunosorbent assay and Western blotting. Immunization of goats with inactivated elementary bodies (IEBs) led to a predominant $IgG_1$ isotype response. This indicated that a Th2 response was induced. After challenge, the IgG isotype responses were mixed whereby both $IgG_1$ and $IgG_2$ antibodies were detected. Two goats that survived virulent challenge had a predominant $IgG_2$ isotype response. In cattle live infection by natur l challenge or experiment led to a predominant $IgG_1$ isotype response. Immunization of cattle with IEBs however led to mixed IgG responses characterized by similar $IgG_1$ and $IgG_2$ ratios. In the mouse live infection led to a predominant $IgG_2$ isotype response. This indicated the mouse developed a true Th1 type cell mediated immune response when inoculated with live organisms. Immunization with inactivated organisms on the other hand led to a dominant $IgG_1$ response. It is evident from this work that the immune responses of ruminants and mice to C. ruminantium are different and that using mice as the experimental model for immune responses to Cowdria ruminantium. is not the appropriate.

Manila clam, Ruditapes philippinarum Cathepsin D: Molecular analysis and immune response against brown ring disease causing Vibrio tapetis challenge

  • Menike, Udeni;Ariyasiri, Krishan;Choi, Jin-Young;Lee, Youngdeuk;Wickramaarachchi, W.D.N.;Premachandra, H.K.A.;Lee, Jehee;De Zoysa, Mahanama
    • The Korean Journal of Malacology
    • /
    • v.29 no.2
    • /
    • pp.155-161
    • /
    • 2013
  • Cathepsins are lysosomal/cysteine proteases belong to papain family (C1 family) that is involved in intracellular protein degradation, antigen processing, hormone maturation, and immune responses. In this study, member of cathepsin family was identified from Manila clam (Mc-Cathepsin D) and investigated the immune response against brown ring disease (BRD) causing Vibrio tapetis challenge. The identified Mc-Cathepsin D gene encodes characteristic features typical for the cathepsin family including eukaryotic and viral aspartyl protease signature domain and two highly conserved active sites ($^{84}VVFDTGSSNLWV^{95}$ and $^{270}IADTGTSLLAG^{281}$). Moreover, MC-Cathepsin D shows higher identity values (-50-70%) and conserved amino acids with known cathepsin D members. Transcriptional results (by quantitative real-time RT-PCR) showed that Mc-Cathepsin D was expressed at higher levels in gills and hemocytes than mantle, adductor muscle, foot, and siphon. After the V. tapetis challenge under laboratory conditions, Mc-Cathepsin D mRNA was up-regulated in gills and hemocytes. Present study indicates that Mc-Cathepsin D is constitutively expressed in different tissues and potentially inducible when infecting BRD by V. tapetis. It is further suggesting that Mc-Cathepsin D may be involved in multiple role including immune response reactions against BRD.

Comparison of immunoadjuvant activities of four bursal peptides combined with H9N2 avian influenza virus vaccine

  • Zhang, Cong;Zhou, Jiangfei;Liu, Zhixin;Liu, Yongqing;Cai, Kairui;Shen, Tengfei;Liao, Chengshui;Wang, Chen
    • Journal of Veterinary Science
    • /
    • v.19 no.6
    • /
    • pp.817-826
    • /
    • 2018
  • The bursa of Fabricius (BF) is a central humoral immune organ unique to birds. Four bursal peptides (BP-I, BP-II, BP-III, and BP-IV) have been isolated and identified from the BF. In this study, the immunoadjuvant activities of BPs I to IV were examined in mice immunized with H9N2 avian influenza virus (AIV) vaccine. The results suggested that BP-I effectively enhanced cell-mediated immune responses, increased the secretion of Th1 (interferon gamma)- and Th2 (interleukin-4)-type cytokines, and induced an improved cytotoxic T-lymphocyte (CTL) response to the H9N2 virus. BP-II mainly elevated specific antibody production, especially neutralizing antibodies, and increased Th1- and Th2-type cytokine secretion. BP-III had no significant effect on antibody production or cell-mediated immune responses compared to those in the control group. A strong immune response at both the humoral and cellular levels was induced by BP-IV. Furthermore, a virus challenge experiment followed by H&E staining revealed that BP-I and BP-II promoted removal of the virus and conferred protection in mouse lungs. BP-IV significantly reduced viral titers and histopathological changes and contributed to protection against H9N2 AIV challenge in mouse lungs. This study further elucidated the immunoadjuvant activities of BPs I to IV, providing a novel insight into immunoadjuvants for use in vaccine design.

Changes of Immunoglobulins and Lymphocyte Subpopulations in Peripheral Blood from Holstein Calves Challenged with Escherichia coli Lipopolysaccharide

  • Kim, M.H.;Yun, C.H.;Kim, G.R.;Ko, J.Y.;Lee, Jung-Joo;Ha, Jong-K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.5
    • /
    • pp.696-706
    • /
    • 2011
  • The objective of this study was to characterize serum immunoglobulins and lymphocytes subpopulations in the peripheral blood mononuclear cells (PBMCs) of Holstein calves in response to lipopolysaccharide (LPS) challenge from Escherichia coli. Fourteen calves received subcutaneous injections of E. coli LPS at 10 weeks of age, and six calves were injected with saline as a control. The concentrations of total serum IgG and the relative amount of LPS-specific IgG in calves challenged with LPS were significantly higher (p<0.05) compared to control animals and LPS challenge significantly increased (p<0.05) the percentage of $CD5^+$ and $CD21^+$ T cells in PBMCs. Meanwhile, LPS challenge significantly increased (p<0.05, p<0.01) the percentage of $CD8^+$ and $CD25^+$ T cells in peripheral blood mononuclear cells (PBMC) at 7 and 14 Day-post LPS challenge (DPLC), respectively. The composition of $CD4^+CD25^+$ T cells and $CD8^+CD25^+$ T cells from calves challenged with LPS was also higher (p<0.05 and p = 0.562, respectively) than those of control calves at 14 DPLC. In conclusion, LPS challenge not only induces production of IgG with expression of B-cell immune response related cell surface molecules, but also stimulates activation of T-lymphocytes in PBMC. Our results suggest that LPS challenge in calves is a good model to elucidate cellular immune response against Gram-negative bacterial infections.

Effects of Salmonella typhymurium Lipopolysaccharide Challenge on the Performance, Immune Responses and Zinc Metabolism of Laying Hens Supplemented with Two Zinc Sources

  • Cheng, Tingshui;Guo, Yuming
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.12
    • /
    • pp.1717-1724
    • /
    • 2004
  • The study was conducted to determine the effect of Salmonella typhymurium lipopolysaccharide (LPS) challenge on egg-laying performance, inflammatory response, zinc metabolism in layer fed diets supplemented with organic or inorganic zinc since 3-wk-old. The three dietary treatments were corn-soybean meal basal diet without supplemental zinc or with supplemental zinc at 60 mg/kg zinc from $ZnSO_4$ or zinc amino acid complex (ZnAA). At the age of 58 wk-old, twelve hens from each dietary treatment were allotted into two sub-groups. On day 1, 3, 5, 7 of the $58^{th}$ week of age, six birds of one sub-group were injected intraperitoneally (i.p.) with 2 ml LPS (1.0 $\ell$/ml) or sterile saline. Neither zinc source ${\times}$ immune challenge interaction nor zinc source effect on egg production performance was observed (p>0.05), LPS-challenge decreased egg production (p<0.04) and increased percentage of cracked eggs (p <0.01). With LPS challenged, the fever response of hens fed ZnAA peaked and subsided earlier than in hens fed $ZnSO_4$ or basal diet. Serum IL-1$\beta$ at 3 h was higher (p<0.01), but lower (p<0.001) at 12 h post-challenge with LPS in hens fed ZnAA than $ZnSO_4$. In salinetreated groups, serum IL 1$\beta$ was higher in hens fed ZnAA than the basal diet at 3 h post-injection (p<0.01). LPS-challenged birds had lower serum zinc and higher zinc sequestered in liver and spleen (p<0.001). In saline-treated birds, there was no difference in zinc concentration of serum, liver and spleen among different dietary treatments (p>0.05). Supplementation of 60 mg/kg zinc from either ZnAA or $ZnSO_4$ significantly (p<0.05) elevated metallothionein (MT) concentration in liver and spleen. MT concentration in liver of birds fed ZnAA diet was higher than in those fed $ZnSO_4$ diet (p<0.05). The magnitude of increase of hepatic and splenic MT due to LPS challenge was higher by supplementation of ZnAA than $ZnSO_4$. The results suggest that zinc amino acid complex enhanceed MT synthesis and zinc sequestered in liver and spleen and increased the sensitivity to immune response due to LPS challenge.

Gut Health of Pigs: Challenge Models and Response Criteria with a Critical Analysis of the Effectiveness of Selected Feed Additives - A Review

  • Adewole, D.I.;Kim, I.H.;Nyachoti, C.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.7
    • /
    • pp.909-924
    • /
    • 2016
  • The gut is the largest organ that helps with the immune function. Gut health, especially in young pigs has a significant benefit to health and performance. In an attempt to maintain and enhance intestinal health in pigs and improve productivity in the absence of in-feed antibiotics, researchers have evaluated a wide range of feed additives. Some of these additives such as zinc oxide, copper sulphate, egg yolk antibodies, mannan-oligosaccharides and spray dried porcine plasma and their effectiveness are discussed in this review. One approach to evaluate the effectiveness of these additives in vivo is to use an appropriate disease challenge model. Over the years, researchers have used a number of challenge models which include the use of specific strains of enterotoxigenic Escherichia coli, bacteria lipopolysaccharide challenge, oral challenge with Salmonella enteric serotype Typhimurium, sanitation challenge, and Lawsonia intercellularis challenge. These challenge models together with the criteria used to evaluate the responses of the animals to them are also discussed in this review.

Immuno-enhancing Effects of Lactobacillus salivarius JWS 58 and Lactobacillus plantarum JWS 1354 isolated from duck (오리로부터 분리한 Lactobacillus salivarius JWS 58과 Lactobacillus plantarum JWS 1354 균주의 면역활성효과)

  • Choi, Hyun Jong;Kim, Ji Ye;Shin, Myeong Su;Lee, Sang Myeong;Lee, Wan Kyu
    • Korean Journal of Veterinary Research
    • /
    • v.51 no.4
    • /
    • pp.281-288
    • /
    • 2011
  • Lactobacillus salivarius JWS 58 (JWS 58) and Lactobacillus plantarum JWS 1354 (JWS 1354) are isolated from duck intestine and have ability to produce bacteriocin. The objective of this study was to evaluate the immunomodulatory effects of JWS 58 and JWS 1354. The nitric oxide (NO) and cytokines (IL-$1{\beta}$ and TNF-${\alpha}$) were measured in C57BL/6 mouse peritoneal macrophages to determine immune enhancing effects of JWS 58 and JWS 1354. A Listeria (L.) monocytogenes challenge mice model was used to evaluate immune enhancement ability of JWS 58 and JWS 1354 in vivo. The results showed that JWS 58 and JWS 1354 increased the production of NO or cytokines by peritoneal macrophages and that oral administration of viable probiotic strains in mice elicited the immuno-modulatory effect upon L. monocytogenes challenge. JWS 1354 showed stronger immune enhancing effects than JWS 58. Collectively, this study demonstrated that Lactobacillus strain JWS 58 and JWS 1354 possess immune enhancing effect. Furthermore, two stains are expected to use feed supplement to prevent diseases by pathogenic bacteria through releasing bacteriocin and enhancing host immune responses in animal.

Application of Apoptogenic Pretreatment to Enhance Anti-tumor Immunity of Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF)-secreting CT26 Tumor Cells

  • Jun, Do-Youn;Jaffee, Elizabeth M;Kim, Young-Ho
    • IMMUNE NETWORK
    • /
    • v.5 no.2
    • /
    • pp.110-116
    • /
    • 2005
  • Background: As an attempt to develop a strategy to improve the protective immune response to GM-CSF-secreting CT26 (GM-CSF/CT26) tumor vaccine, we have investigated whether the apoptogenic treatment of GM-CSF/CT26 prior to vaccination enhances the induction of anti-tumor immune response in mouse model. Methods: A carcinogeninduced mouse colorectal tumor, CT26 was transfected with GM-CSF gene using a retroviral vector to generate GM-CSF-secreting CT26 (CT26/GM-CSF). The CT26/GM-CSF was treated with ${\gamma}$-irradiation or mitomycin C to induce apoptosis and vaccinated into BALB/c mice. After 7 days, the mice were injected with a lethal dose of challenge live CT26 cells to examine the protective effect of tumor vaccination in vivo. Results: Although both apoptotic and necrotic CT26/GM-CSF vaccines were able to enhance anti-tumor immune response, apoptotic CT26/GM-CSF induced by pretreatment with ${\gamma}$-irradiation (50,000 rads) was the most potent in generating the anti-tumor immunity, and thus 100% of mice vaccinated with the apoptotic cells remained tumor free for more than 60 days after tumor challenge. Conclusion: Apoptogenic pretreatment of GM-CSF-secreting CT26 tumor vaccine by ${\gamma}$-irradiation (50,000 rads) resulted in a significant enhancement in inducing the protective anti-tumor immunity. A rapid induction of apoptosis of CT26/GM-CSF tumor vaccine at the vaccine site might be critical for the enhancement in anti-tumor immune response to tumor vaccine.

Effects of Different Dietary Vitamin E Levels on Growth Performance, Non-specific Immune Responses, and Disease Resistance against Vibrio anguillarum in Parrot Fish (Oplegnathus fasciatus)

  • Galaz, German Bueno;Kim, Sung-Sam;Lee, Kyeong-Jun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.7
    • /
    • pp.916-923
    • /
    • 2010
  • We report nutritional physiology and non-specific immune responses of vitamin E in parrot fish for the first time. This study aimed to investigate the essentiality and requirements in diets based on growth performances, non-specific immune responses and a challenge test against Vibrio angullarum. Six casein-gelatin based semi-purified diets were formulated to contain six graded levels of DL-${\alpha}$-tocopheryl acetate (${\alpha}$-TA) at 0, 25, 50, 75, 100 and 500 mg/kg diet (designated as E0, E25, E50, E75, E100 and E500, respectively) and fed to triplicate groups of juvenile parrot fish for 12 weeks. The analyzed dietary concentrations of vitamin E were 0, 38, 53, 87, 119 and 538 mg/kg diet for E0, E25, E50, E75, E100 and E500, respectively. At the end of the feeding trial, growth performance and feed utilization of fish fed the E25 were significantly higher compared to that of fish fed the other diets. Liver ${\alpha}$-tocopherol concentration was significantly increased with an increase in dietary ${\alpha}$-TA in a dose dependent manner. No apparent clinical signs of vitamin E deficiency and mortality were observed in fish fed the basal diet for 12 weeks. Among the immune responses assayed, phagocytic (NBT assay) and myeloperoxidase activities were significantly increased with increment of dietary ${\alpha}$-TA levels. During the challenge test with V. anguillarum, E75, E100, and E500 diets resulted in higher survivals than E0, E25 and E50 diets. The findings of this study suggest that parrot fish require exogenous vitamin E and the optimum dietary level could be approximately 38 mg ${\alpha}$-TA/kg diet for normal growth and physiology. Dietary ${\alpha}$-TA concentration over 500 mg/kg could be required to enhance the nonspecific immune responses and improve the resistance of juvenile parrot fish against V. anguillarum.