• Title/Summary/Keyword: Immobilization method

Search Result 315, Processing Time 0.03 seconds

Micro-threads of Cross-linked Hyaluronic Acid Hydrogel using a Microfluidic Chip (미세 유체 칩 기반의 히알루론산 미세 실의 제작)

  • Lee, Yun-Kyung;Lee, Kwang-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • The successful synthesis of hyaluronic acid micro-threads is very promising approach for the broad application in tissue engineering such as dermal fillers. Because hyaluronic acid has the excellent biocompatibility and ability to maintain the moisture of up to several hundred times its own weight. In order to generate the hyaluronic acid micro-threads in microfluidic system, we employed two-phase flow microfluidic chip to make a rapid synthesis of the hyaluronic acid hydrogel. Hyaluronic acid was mixed with 0.02N NaOH solution and 1, 4-Butanediol diglycidyl ether (BDDE) solution and then injected into core channel. The ethanol was used for the 3-dimensional micro-thread formation in sheath channel. We manipulated the diameter of HA micro-threads using controlling of flow rates in microfluidic chip, and showed the feasibility of immobilization in HA micro-threads with florescent substances. Also, the generated HA micro-threads were evaluated and showed the suitable properties with tensile strength, bending property, and swelling profiles for dermal fillers. As a result, we suggested an innovative method for microfluidic chip-based HA micro-threads which could safely be applied as dermal filler in tissue engineering.

Immobilized ${\beta}-Cyclodextrin$ as a Simple and Recyclable Method for Cholesterol Removal in Milk

  • Kwak, H.-S.;Kim, S.-H.;Kim, J.-H.;Choi, H.-J.;Kang, J.
    • Archives of Pharmacal Research
    • /
    • v.27 no.8
    • /
    • pp.873-877
    • /
    • 2004
  • This study was designed to determine the optimum conditions of three different factors (mixing time, mixing temperature, and tube size) in reduction of cholesterol in milk using immobilized $\beta$-CD beads. Immobilized $\beta$-CD glass beads were prepared at different conditions of silaniza-tion and $\beta$-CD immobilization reactions. In result, the glass beads (diameter 1 mm) at 20 mM 3-isocyanatopropyltriethoxysilane and 30 mM $\beta$-CD without base showed the highest choles-terol removal rate as 41%. Using above immobilized $\beta$-CD glass beads, the cholesterol removal rate was 40.2% with 6 h of mixing time in 7 mm diameter tube at $10^{\circ}C$. After choles-terol removal from milk, the glass beads were washed for cholesterol dissociation and reused. In recycling study, the cholesterol removal rate was 41%, which was mostly same as that using new glass beads. These results indicated that cholesterol removal rate was about 40% with $\beta$-CD immobilized glass beads, however, the recycling efficiency was almost 100%.

Decay Rate and Changes of Nutrients during the Decomposition of Zizania latifolia

  • Mun, Hyeong-Tae;Jeong, Namgung;Kim, Jeong-Hee
    • The Korean Journal of Ecology
    • /
    • v.24 no.2
    • /
    • pp.81-85
    • /
    • 2001
  • Decomposition of Zizania latifolia was investigated with litterbag method for 13 months from November in 1998 to December in 1999, at the fringe of stream at Boryeong, Chungnam Province in Korea. After 13 months, remaining mass of leaves, culms and rhizomes was 16.9, 14.7, and 10.1%, respectively. Mass loss of the rhizomes was higher than those of the leaves and culms. The decay rate of leaves, culms and rhizomes was 1.86, 2.00 and 2.36 per year, respectively. Initial concentration of N, P, K, Ca, and Mg of leaves, culms and rhizomes was 18.0, 14.5, 44.0 mg/g for N,0.18, 0.12, 0.67 mg/g for P, 14.1 ,14.2, 14.8 mg/g for K,3.6, 1.5, 0.3 mg/g for Ca, 1.1, 0.5, 0.5 mg/g for Mg, respectively. Concentrations of N and P in rhizomes were higher than those in leaves and culms. Except for Mg in rhizomes, there was no immobilization period during the decomposition. Most of the N, P and Mg were lost during the first 3 months. In case of K and Ca, most were lost within 1 month.

  • PDF

Fabrication of Microbe-Attached SWNT Film for Biosensor Applications and Organophosphorus Compounds Detection (바이오센서 적용을 위한 미생물이 고정된 부양형 탄소나노튜브 필름 제작과 유기인 화합물 검출)

  • Kim, Intae;An, Taechang;Kim, Chang Sup;Cha, Hyung Joon;Kim, Jin Ho;Lim, Soo Taek;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.35-41
    • /
    • 2014
  • Microbes have been used extensively in various fields of researches and industries but has not been used widely for microfluidic biosensor applications because it is difficult to immobilize properly to a small space. Therefore, we developed a microbial immobilization method for microfluidic devices using single-walled nanotubes and dielectrophoretic force. Single-walled nanotubes and Escherichia coli were aligned between two cantilever electrodes by a positive dielectrophoretic force resulting in a film of single-walled nanotubes with attached Escherichia coli. The optimal condition of film formation without a cell lysis was investigated. Diameter of single-walled nanotubes and electric field (intensity and duration of application) had an effect on the cell viability. On the other hand, the cell concentration of the suspension did not affect the cell viability. Paraoxon was detected using single-walled nanotubes film with attached Escherichia coli that expressed organophosphorus hydrolase. This film which is suspended from the substrate showed faster response time than sensors that are not suspended from the substrate.

Application of Chiral Ligands Heterogenized over Solid Supports on Enantioselective Catalysis (고체 담체에 고정화된 키랄리간드의 비대칭 촉매반응에의 응용)

  • Lee, Kwang-Yeon;Kawthekar, Rahul B.;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.565-574
    • /
    • 2006
  • The trend towards the application of single enantiomers of chiral compounds is undoubtedly increasing. Among the various methods to obtain one single enantio-riched compound selectively, enantioselective catalysis is the most attractive method. Especially, it is important to increase the activity, selectivity and lifetime of usually expensive chiral catalysts with a minute quantity in the enantioselective synthesis. Immobilization of active homogeneous catalysts is a fashionable topic in asymmetric catalysis, providing the inherent advantage of easy separation and better handling properties. Many different ways have been investigated to improve the enantioselectivity of products and to recycle the catalysts. This review mainly focused on the present scope and limitations of different types of enantioselective heterogeneous catalysts.

Production of L(+)-Lactic Acid by Rhizopus oryzae after Immobilization in Polymer Supports with Gamma-ray Induced Polymerization (방사선중합체로 고정화된 Rhizopus oryzae의 유산생성)

  • 양재승;타마다
    • KSBB Journal
    • /
    • v.6 no.4
    • /
    • pp.403-406
    • /
    • 1991
  • Lactic acid production yield was examined for commercial use by immobilizing Rhizopus oryzae with radiation induced polymer. The supporting material was synthesized by the low temperature radiation polymerization method, in which the microorganism was entrapped physically by contacting together in culture broth shaking for 24 hours. Support polymers with 5∼10vol-% monomers were able to increase their catalytic activities, consuming 65g/1 of glucose, producing 56g/1 of lactic acid, thus yielding 88% of product in general. But in free culture, the microorganism consumed almost all carbon sources and produced lactic acid only 60% even after 96 hours. The yield of the experiment under discussion was significantly high compared with conventional immobilization procedure.

  • PDF

Unfolded Histidine-Tagged Protein is Immobilized to Nitrilotriacetic Acid-Nickel Beads, But Not the Nickel-Coated Glass Slide

  • Cho Min-Ho;Ahn Sun-Young;Park Heon-Yong
    • Genomics & Informatics
    • /
    • v.4 no.3
    • /
    • pp.133-136
    • /
    • 2006
  • The adsorption of proteins on the surface of glass slides is essential for construction of protein chips. Previously, we prepared a nickel-coated plate by the spin-coating method for immobilization of His-tagged proteins. In order to know whether the structural factor is responsible for the immobilization of His-tagged proteins to the nickel-coated glass slide, we executed a series of experiments. First we purified a His-tagged protein after expressing the vector in E. coli BL21 (DE3). Then we obtained the unfolding curve for the His-tagged protein by using guanidine hydrochloride. Fractions unfolded were monitored by internal fluorescence spectroscopy. The ${\Delta}G_{H20}$ for unfolding was $2.27kcal/mol{/pm}0.52$. Then we tested if unfolded His-tagged proteins can be adsorbed to the nickel-coated plate, comparing with $Ni^{2+}-NTA$ (nitrilotriacetic acid) beads. Whereas unfolded His-tagged proteins were adsorbed to $Ni^{2+}-NTA$ beads, they did not bind to the nickel-coated plate. In conclusion, a structural factor is likely to be an important factor for constructing the protein chips, when His-tagged proteins will immobilize to the nickel-coated slides.

Immobilization of Hansenula polymorpha Alcohol Oxidase for Alcohol Biosensor Applications

  • Chung, Hyun-Jung;Cho, Hyun-Young;Kong, Kwang-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.57-60
    • /
    • 2009
  • Alcohol oxidase catalyzes the oxidation of short lines alcohol to aldehyde. In this study, alcohol oxidase from Hansenula polymorpha (HpAOD) was induced by addition of 0.5% methanol as the carbon source and purified to electrophoretic homogeneity by column chromatographies. The purified HpAOD was immobilized with DEAE-cellulose particles and its biochemical properties were compared with those of free enzyme. The substrate specificity and the optimum pH of immobilized enzyme were similar to those of free enzyme. On the other hand, the Km values of free and immobilized enzymes for ethanol were 6.66 and 14.65 mM, respectively. The optimum temperature for free enzyme was ${50^{\circ}C}$, whereas that for immobilized enzyme was ${65^{\circ}C}$. Immobilized enzyme showed high stability against long storage. Immobilized enzyme was also tested for the enzymatic determination of ethanol by the colorimetric method. We detected 1 mg/liter ethanol ($1{\times}10^{-4}$% ethanol) by 2,6- dichloroindophenol system. Therefore, the present study demonstrated that immobilized HpAOD has high substrate specificity toward ethanol and storage stability, which may be of considerable interest for alcohol biosensor and industrial application.

Polyelectrolyte Micropatterning Using Agarose Plane Stamp and a Substrate Having Microscale Features on Its Surface

  • Lee, Min-Jung;Lee, Nae-Yoon;Lee, Sang-Kil;Park, Sung-Su;Kim, Youn-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.10
    • /
    • pp.1539-1542
    • /
    • 2005
  • We have introduced polyelectrolyte micro-patterning technique employing agarose plane stamp and a hard substrate having microscale features on its surface. With this method, chemically micropatterned surfaces with both positive and negative functionalities were successfully embedded in well-defined microstructures, and selective impartment of charge functionalities was confirmed by patterning bead bearing surface charge. Furthermore, this technique allows highly sensitive immobilization of protein onto targeted surface simply by endowing functionalities, which extends the potential of its use as a tool for high-throughput protein microarray and proteomics. Because plane agarose stamp is free of structures on its surface, there is no concern for pattern collapse, and the combination of agarose plane stamp with patterned substrate is more suited for selective protein patterning compared with adopting surface-patterned agarose stamp with flat substrate. Our technique using agarose plane stamp and a substrate having microscale features on its surface suggests a range of possible applications, including the micropatterning of biofunctionalized copolymer having polyelectrolyte block, immobilization of micro- and nanoparticle with biofunctionalities such as biotin and streptavidine, and establishing optoelectronic microstructures with micro-beads on various surfaces.

Determination of reaction kinetics during vitrification of radioactive liquid waste for different types of base glass

  • Suneel, G.;Rajasekaran, S.;Selvakumar, J.;Kaushik, Chetan P.;Gayen, J.K.;Ravi, K.V.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.746-754
    • /
    • 2019
  • Vitrification of radioactive liquid waste (RLW) provides a feasible solution for isolating radionuclides from the biosphere for an extended period. In vitrification, base glass and radioactive waste are added simultaneously into the melter. Determination of heat and mass transfer rates is necessary for rational design and sizing of melter. For obtaining an assured product quality, knowledge of reaction kinetics associated with the thermal decomposition of waste constituents is essential. In this study Thermogravimetry (TG) - Differential Thermogravimetry (DTG) of eight kinds of nitrates and two oxides, which are major components of RLW, is investigated in the temperature range of 298-1273 K in the presence of base glasses of five component (5C) and seven component (7C). Studies on thermal behavior of constituents in RLW were carried out at heating rates ranging from 10 to $40\;K\;min^{-1}$ using TG - DTG. Thermal behavior and related kinetic parameters of waste constituents, in the presence of 5C and 7C base glass compositions were also investigated. The activation energy, pre-exponential factor and order of the reaction for the thermal decomposition of 24% waste oxide loaded glasses were estimated using Kissinger method.