• Title/Summary/Keyword: Immiscible emulsion droplet

Search Result 2, Processing Time 0.013 seconds

Pinched Flow Fractionation Microchannel to Sort Microring-Containing Immiscible Emulsion Droplets (마이크로 링이 함유된 비혼합성 에멀젼 액적의 분류를 위한 Pinched Flow Fractionation 마이크로 채널)

  • Ye, Woojun;Kim, Hyunggun;Byun, Doyoung
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.2
    • /
    • pp.41-47
    • /
    • 2017
  • Microring/nanoring structure has high applicability for nano-antenna and biosensor thanks to its superior optical characteristics. Although coiling nanowires manufactured using immiscible emulsion droplets have an advantage in mass production, this process also forms nanowire bundles. In this study, we solved the nanowire bundle problem by size-selective sorting of the emulsion droplets in a pinched flow fractionation microchannel. Utilizing silver nanowires and immiscible emsulsion droplets, we investigated the correlation between the size of ring droplets and bundle droplet. We visualized the sorting process for glass particles and microring-containing emulsion droplets. Droplets were sorted based on their size, and the ratio of bundle droplets in solution decreased. This droplet-sorting strategy has potential to help the printing and coating process for manufacturing of ring structure patterns and developing of functional materials.

Enzymatic Hydrolysis of Hydrophobic Triolein by Lipase in a Mone-phase Reaction System Containing Cyclodextrin; Reaction Characteristics

  • Lee, Yong-Hyun;Kim, Tae-Kwon;Shin, Hyun-Dong;Park, Dong-Chan
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.2
    • /
    • pp.103-108
    • /
    • 1998
  • A hydrophobic substrate triolein was hydrolyzed by lipase in a mono-phase reaction system containing cyclodextrin(CD) as emulsifier. The triolein was transformation to an emulsion-like state in the CD containing reaction system in contrast to the oil-droplet like state without CD due to the formation of an inclusion complex between the lipids and CDs. The hydyrolysis reaction increased substantially in the CD containing reaction system, and the optimum reaction conditions including the amount of lipase, ${\beta}$-CD concentration, and mixing ratio of triolein and ${\beta}$-CD, were determined. The performance of the enzyme reaction in a mono-phase reaction system was compared with that of a two-phase reaction system which used water immiscible hexane as the organic solvent. The role of a CD in the mono-phase reaction system was elucidated by comparing the degree of the inclusion complex formation with triolein and oleic acid, Km and Vmax values, and product inhibition by oleic aicd in aqueous and CD containing reaction systems. The resulting enhanced reaction seems to be caused by two phenomena; the increased accessibility of lipase to triolein and reduced product inhibition by oleic acid through the formation of an inclusion complex.

  • PDF