• Title/Summary/Keyword: Immiscible Cu-Nb system

Search Result 3, Processing Time 0.017 seconds

Fabrication of nonequilibrium alloy powders in immiscible Cu-Nb system by mechanical alloying (기계적 합금화에 의한 비고용 Cu-Nb계 비평형 합금의 제조)

  • Lee, Chung-Hyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.5
    • /
    • pp.210-215
    • /
    • 2006
  • Mechanical alloying (MA) by high energy ball mill of pure copper and niobium powders was carried out under the Ar gas atmosphere. The supersaturated solid solution can be produced in the range up to $Cu_xNb_{100-x}$(x=5-30) by MA for 120 hrs, as demonstrated by X-ray diffraction, DSC analysis and the electronic studies through a change in the superconducting transition in the low-temperature specific heat. The $Cu_{30}Nb_{70}$ samples ball-milled for 120 hrs exhibit only a broad exothermic heat release. The total energy, ${\Delta}H_t$ accumulated during MA far the mixture of $Cu_{30}Nb_{70}$ powders increased with milling time and approached the saturation value of 7.5 kJ/mol after 120 h of milling. It can be seen that the free energy difference between the supersaturated solid solution and the mixture of $Cu_{30}Nb_{70}$ powders is estimated to be 7 kJ/mol by Miedema et al. Hence it is thermodynamically possible to assume the formation of a supersaturated solid solution phase in this system.

Surface Alloy Formation of Nb on Cu(100)

  • 이준희;윤홍식;양경득;여인환
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.170-170
    • /
    • 1999
  • We studied Nb growth mode on Cu(100) surface by scanning tunneling microscopy (STM) at room temperature. Nb/Cu is immiscible at room temperature and thus is an ideal system for studying surface alloy formation. Initially deposited Nb atoms are incorporated subsurface on Cu(100). After annealing, they are preferentially found at step edges and appear as bright dots surrounded by dark rings. Ordering emerges from step edges as annealed. Ordered ({{{{ SQRT { 5} }$\times${{{{ SQRT { 5} }}}})R 26.6$^{\circ}$phase Nb structure is formed at $\theta$<0.2ML after annealing to 50$0^{\circ}C$. At higher coverage, $\theta$>0.25, annealing leads to p(2$\times$2) phase. due to large mismatch in lattice parameters, the domain is limited to a few tens of nm2. Growth kinetics of the system will be discussed.

  • PDF