• 제목/요약/키워드: Immersion test

검색결과 593건 처리시간 0.024초

Experimental study on the tension of cables and motion of tunnel element for an immersed tunnel element under wind, current and wave

  • Wu, Hao;Rheem, Chang-Kyu;Chen, Wei;Xu, Shuangxi;Wu, Weiguo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.889-901
    • /
    • 2021
  • The tension of cables and motion response significantly affect safety of an immersed tunnel element in the immersion process. To investigate those, a hydrodynamic scale-model test was carried out and the model experiments was conducted under wind, current and wave loads simultaneously. The immersion standby (the process that the position of the immersed tunnel element should be located before the immersion process) and immersion process conditions have been conducted and illustrated. At the immersion standby conditions, the maximum force of the cables and motion is much larger at the side of incoming wind, wave and current, the maximum force of Element-6 (6 cables directly tie on the element) is larger than for Pontoon-8 (8 cables tie on pontoon of the element), and the flexible connection can reduce the maximum force of the mooring cables and motion of element (i.e. sway is expecting to decrease approximate 40%). The maximum force of the mooring cables increases with the increase of current speed, wave height, and water depth. The motion of immersed tunnel element increases with increase of wave height and water depth, and the current speed had little effect on it. At the immersion process condition, the maximum force of the cables decrease with the increase of immersion depth, and dramatically increase with the increase of wave height (i.e. the tension of cable F4 of pontoons at wave height of 1.5 m (83.3t) is approximately four times that at wave height of 0.8 m). The current speed has no much effect on the maximum force of the cables. The weight has little effect on the maximum force of the mooring cables, and the maximum force of hoisting cables increase with the increase of weight. The maximum value of six-freedom motion amplitude of the immersed tunnel element decreases with the increase of immersion depth, increase with the increase of current speed and wave height (i.e. the roll motion at wave height of 1.5 m is two times that at wave height of 0.8 m). The weight has little effect on the maximum motion amplitude of the immersed tunnel element. The results are significant for the immersion safety of element in engineering practical construction process.

완전몰입 가상현실이 건강한 성인의 자율신경계에 미치는 영향에 대한 융복합 연구 (A convergence study on the influence of full immersion virtual reality on the autonomic nervous system of healthy adults)

  • 강종호;김충유
    • 한국융합학회논문지
    • /
    • 제9권3호
    • /
    • pp.131-135
    • /
    • 2018
  • 본 연구의 목적은 완전몰입 가상현실이 자율신경계에 미치는 영향을 알아보는데 있다. 본 연구의 대상자는 가상현실 장비를 접하지 않은 17명의 20대 남성으로 하였다. 대상자에게 완전몰입 가상현실 콘텐츠를 제공받았고, 적용 전과 후에 5분 동안의 심전도 신호를 측정하였다. 획득한 심전도 신호는 교감신경계의 활성을 반영하는 LF, 부교감신경계의 활성을 반영하는 HF, 자율신경계의 전반적인 활성을 반영하는 TP, 그리고 자율신경계의 활성 균형을 반영하는 LF/HF로 분석하여 자율신경계를 평가하였다. 그 결과, 완전몰입 가상현실을 적용한 후 대상자의 HF와 TP는 적용 전에 비해 유의하게 감소하였고, LF/HF는 유의하게 증가하였다. 본 연구의 결과에 따르면 완전몰입 가상현실은 자율신경계에 스트레스를 제공하지만, 그 변화는 건강한 성인의 정상범위 내에 있다는 것을 확인할 수 있었다. 따라서 완전몰입 가상현실은 건강한 성인에게 안전하게 적용될 수 있다.

Corrosion Behavior of Stainless Steel 304, Titanium, Nickel and Aluminium in Non-Aqueous Electrolytes

  • Dilasari, Bonita;Park, Jesik;Kusumah, Priyandi;Kwon, Kyungjung;Lee, Churl Kyoung
    • 전기화학회지
    • /
    • 제17권1호
    • /
    • pp.26-29
    • /
    • 2014
  • The corrosion behavior of stainless steel 304 (SS 304), titanium, nickel and aluminium is studied by immersion and anodic polarization tests in non-aqueous electrolytes. Tetraethyl ammonium tetrafluoroborate is used as a supporting electrolyte in the three kinds of solvents. The immersion test shows that chemical corrosion rate in propylene carbonate-based electrolyte is lower than those in acetonitrile- or ${\gamma}$-butyrolactone-based electrolytes. Surface analyses do not reveal any corrosion product formed after the immersion test. In the anodic polarization tests, a higher concentration of supporting electrolyte gives a higher current density. In addition, a higher temperature increases the current density in the active region and reduces the potential range in the passive region. SS 304 shows the highest corrosion potential while Al shows the lowest corrosion potential and the highest current density in all studied conditions. Based on the conducted corrosion tests, the corrosion resistance of metal substrates in the organic solvents can be sorted in descending order as follows: SS 304 - Ti - Ni - Al.

ABS Test를 이용한 아스팔트 혼합물의 수분에 의한 점착특성 평가 (Evaluation of Bond Strength Characteristic of Moisture Induced Asphalt Mixtures using ABS Test)

  • 송정탄;양성린;신오철;이석근;임정혁
    • 한국도로학회논문집
    • /
    • 제19권2호
    • /
    • pp.87-95
    • /
    • 2017
  • PURPOSES : The objectives of this study are to evaluate moisture sensitivity of various asphalt mixtures and to suggest an alternate method for the dynamic immersion test, which is used to determine the application of anti-stripping agent, by analyzing bond strength. METHODS : The bond strength of various asphalt mixtures such as hot mix asphalt, warm mix asphalt, and polymer-modified asphalt was evaluated by the ABS test. In order to characterize moisture sensitivity at different temperatures of the mixtures, the ABS test was conducted at $-10^{\circ}C$, $5^{\circ}C$, $20^{\circ}C$, $40^{\circ}C$, and $54^{\circ}C$ under both dry and wet conditions. The concept of the bond strength ratio was applied for objective moisture sensitivity analysis. Moreover, the bond strength characteristic was compared to the dynamic immersion test to suggest an alternate method to determine the application of anti-stripping agent. RESULTS AND CONCLUSIONS : Overall, the polymer-modified asphalt demonstrates the highest bond strength characteristic regardless of moisture condition and temperature. The bond strength characteristic displays a highly reliable linear relationship from $5^{\circ}C$ to $40^{\circ}C$, and the relationship could be used to predict bond strength at any intermediate temperature. Based on the analysis of bond strength and retained asphalt ratio, the bond strength value of 1254 kPa could be applied as a criterion for anti-stripping agent.

수퍼 2상 스테인리스강의 부식 저항성에 관한 연구 (Corrosion Resistance of Super Duplex Stainless Steel)

  • 강흥주;남기우;안석환;강창룡;도재윤;박인덕
    • 한국해양공학회지
    • /
    • 제17권2호
    • /
    • pp.40-46
    • /
    • 2003
  • The corrosion resistance of super duplex stainless steel on both its fibrous and dispersed phase was investigated. These structures consist of various volume fraction and distribution of austenite structure, which were obtained by changing the heat treatment temperature and cycle. The fibrous phase had higher austenite volume fraction than that of the dispersed phase at the same temperature. Corrosion resistance of super duplex stainless steel was evaluated through an immersion test and an impingement test, using 35% HCI and sea water, respectively. Super duplex stainless steel was compared with STS316L and STS304. The corrosion resistance of super duplex stainless steel was superior to ST316L and STS304. The dispersed phase of super duplex stainless steel was more stabilized than the fibrous phase in corrosion. The magnitude of corrosion rate was in order STS304, STS316L, fibrous phase of super duplex stainless steel and dispersed phase of super duplex stainless steel.

염수환경을 고려한 섬유강화 복합재의 내구성 평가 (Durability of Fiber Reinforced Composites under Salt Water Environments)

  • 윤성호;황영은
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.391-396
    • /
    • 2005
  • Salt water spray test and salt water immersion test were experimentally conducted in order to investigate the durability of fiber reinforced composites under salt water environment. The specimens were made of glass fabric reinforcement and phenolic resin. Mechanical test was performed to obtain mechanical properties such as tensile properties, flexural properties, and shear properties by varying with exposure times. Also dynamic mechanical test and FTIR were conducted to investigate a change in chemical structure as well as thermal analysis properties such as storage shear modulus, loss shear moduls, and tan ${\delta}$. According to the results, salt water environment has effected on mechanical properties and thermal analysis properties and especially the durability of glass fabric/phenolic composites were severely affected on salt water immersion environment rather than salt water spray environment.

  • PDF

강섬유보강콘크리트의 내해수성에 관한 실험적 연구 (An Experimental Study on the Seawater Resistance of Steel Fiber Reinforced Concrete)

  • 박승범;오광진;장석호;이봉춘
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.315-322
    • /
    • 1997
  • This paper describes an experimental study on the seawater resistance of steel fiber reinforced concrete. The test method adopted for this study may be devided into long-term immersion test and accelerated test by wetting and drying. Test were carried out to evaluate the procedure in which reduction in dynamic modulus, length change and compressive strength to nine months were measured. Resistance indicators are the water - cement ratio, the content of steel fiber, the immersion water(artificial seawater or freshwater). The conditions of intervals of immersing in artificial seawater and drying, low water-cement ratio, and non-steel fiber became most deteriorated.

  • PDF

불소 제재가 심미 수복 재료의 표면 구조에 미치는 영향 (THE EFFECT OF TOPICAL FLUORIDES ON SURFACE STRUCTURES OF VARIOUS ESTHETIC RESTORATIVE MATERIALS)

  • 김은영;최병재
    • 대한소아치과학회지
    • /
    • 제24권2호
    • /
    • pp.436-448
    • /
    • 1997
  • Topical fluoride application for children is a widely performed procedure in the field of Pediatric Dentistry for its dental caries prevention effects. However, it is recently recognized as having some unwanted effects on several esthetic restorative materials as it roughens the surfaces of the restorative materials. In order to evaluate the surface changes in esthetic restorative materials, the author immersed composite resin, glass ionomer cement, and resin-modified glass ionomer cement specimens in various topical fluoride agents and measured the weight loss and also, examined the specimens under the scanning electron microscope. The followings are the results : 1. All the specimens immersed in APF gel for 4 minutes showed statistically significant weight loss. (paired t-test, P<0.05). 2. There was no statistically significant weight loss for the resin-modified glass ionomer cement and composite resin groups immersed in sodium fluoride solution (paired t-test, P>0.05). 3. When the glass ionomer cement group was immersed in APF gel for 1 and 4 minutes, there was a statistically significant weight loss compare to other esthetic restorative materials (ANOVA, P<0.05). 4. In the resin-modified glass ionomer cement group and the composite resin group, weight loss in the APF gel 4 minutes immersion group was greater than the 1 minute immersion group, and it was statistically significant (ANOVA, P<0.05). 5. When the specimens were examined under scanning electron microscope, the surface changes were greatest in the order of glass ionomer cement, resin-modified glass ionomer cement, composite resin and also in the order of APF gel 4 minute immersion group, 1 minute immersion group, sodium fluoride immersion group, and control group.

  • PDF

염수환경에서 탄소섬유/에폭시 복합재료의 내구성에 미치는 나노입자의 영향 (Nanoparticle Effect on Durability of Carbon fiber/Epoxy Composites in Saline Water Environment)

  • 김부안;문창권
    • 한국해양공학회지
    • /
    • 제28권1호
    • /
    • pp.64-68
    • /
    • 2014
  • This study was conducted to investigate the durability of carbon fiber/epoxy composites (CFRP) in a saline water environment. The carbon fiber/epoxy composites were modified to use nanoparticles such as carbon nanotubes and titanum oxide. These hybrid composites were exposed to a saline water environment for a certain period. The weight gain according to the immersion time, a quasi-static tensile test, and micro-graphic characterization were used to investigate the samples exposed to the saline water environment. The weight gains increased with increasing immersion time. The weight gains of the hybrid composites were lower than that for pure CFRP throughout the entire immersion time. The tensile strengths decreased with increasing immersion time. The tensile strengths of the hybrid composites were higher than that of the pure CFRP throughout the entire immersion time. The pure CFRP was observed to be more degraded than the hybrid composites in the saline water environment. Therefore, it was concluded that the addition of nanoparticles to CFRP could lead to improved durability in a saline water environment.

수분환경에서 탄소섬유강화 에폭시수지의 내구성에 대한 나노입자의 영향 (Study of Nanoparticle Effect on Durability of Carbon fiber/Epoxy Resin Composites in Moisture Environment)

  • 안석환;최영민;문창권
    • 동력기계공학회지
    • /
    • 제18권2호
    • /
    • pp.43-49
    • /
    • 2014
  • This study has been investigated on the durability of carbon fiber/epoxy composites (CFRP) in moisture environment. The carbon fiber/epoxy composites were modified to use the nanoparticles such as carbon nanotubes and titanium oxide. These hybrid composites were exposed to moisture environment for a certain period of time. Weight gain according to immersion time, quasi-static tensile test and micro-graphic characterization were investigated on the samples exposed to moisture environment. Consequently, the weight gains increased with increasing immersion time and weight gain of the hybrid composites was lower than the one of CFRP through the whole immersion time. The tensile strengths decreased with increasing immersion time and tensile strengths of the hybrid composites were higher than the one of CFRP through the whole immersion time. The CFRP were observed more degraded than hybrid compositess in moisture environment. Therefore, it was concluded that the addition of nanoparticles in CFRP could lead to improve the durability in moisture environment.