• Title/Summary/Keyword: Immersion Angle

Search Result 82, Processing Time 0.021 seconds

UV-assisted surface modification of polyethersulfone (PES) membrane using TiO2 nanoparticles

  • Singh, Shruti;Karwa, Vinay;Marathe, K.V.
    • Membrane and Water Treatment
    • /
    • v.9 no.6
    • /
    • pp.393-403
    • /
    • 2018
  • In this research commercial polyethersulfone (PES) membrane was modified using $TiO_2$ nanoparticles (P-25 Degussa) and further irradiated using UV light to overcome the hydrophobicity and fouling nature of the membrane. Further the membranes were characterized using SEM and FTIR. Contact angle measurements study confirmed the hydrophilic tendency of the modified membrane by decreasing the contact angle from $73^{\circ}$ to $20.28^{\circ}$. The modified membranes showed higher flux and better anti-fouling properties as compared to the unmodified counterparts. The optimum conditions were found to be 0.5 wt% $TiO_2$ loading with 60 min membrane immersion and 10 min UV light illumination. The effect of different pH conditions of feed was analysed. Real wastewater filtration experiments also indicated better performance of modified membranes as opposed to neat PES membranes.

Compact near-eye display for firefighter's self-contained breathing apparatus

  • Ungyeon Yang
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.1046-1055
    • /
    • 2023
  • We introduce a display for virtual-reality (VR) fire training. Firefighters prefer to wear and operate a real breathing apparatus while experiencing full visual immersion in a VR fire space. Thus, we used a thin head-mounted display (HMD) with a light field and folded optical system, aiming to both minimize the volume for integration in front of the face into a breathing apparatus and maintain adequate visibility, including a wide viewing angle and resolution similar to that of commercial displays. We developed the optical system testing modules and prototypes of the integrated breathing apparatus. Through iterative testing, the thickness of the output optical module in front of the eyes was reduced from 50 mm to 60 mm to less than 20 mm while maintaining a viewing angle of 103°. In addition, the resolution and image quality degradation of the light field in the display was mitigated. Hence, we obtained a display with a structure consistent with the needs of firefighters in the field. In future work, we will conduct user evaluation regarding fire scene reproducibility by combining immersive VR fire training and real firefighting equipment.

Comparison of Hydrophobicity and Corrosion Properties of Aluminum 5052 and 6061 Alloys After Anodized Surface Treatment (알루미늄 5052 및 6061 합금의 양극산화 표면처리를 통한 발수 특성 및 부식 특성 비교)

  • Park, Youngju;Jeong, Chanyoung
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.200-208
    • /
    • 2022
  • Aluminum alloy is used by adding various elements according to the needs of the industry. Aluminum alloys such as 5052 and 6061 are known to possess excellent corrosion resistance by adding Mg. Despite their excellent physical properties, corrosion can occur. To solve this problem, an anodization technique generally can improve corrosion resistance by forming an oxide structure with maximized hydrophobic properties through coatings. In this study, the anodizing technique was used to improve the hydrophobicity of aluminum 5052 and 6061 by creating porous nanostructures on top of the surface. An oxide film was formed by applying anodizing voltages of 20, 40, 60, 80, and 100 V to aluminum alloys followed by immersion in 0.1 M phosphoric acid for 30 minutes to expand oxide pores. Contact angle and corrosion characteristics were different according to the structure after anodization. For the 5052 aluminum, the corrosion potential was improved from -363 mV to -154 mV as the contact angle increased from 116° to 136°. For the 6061 aluminum, the corrosion potential improved from -399 mV to -124 mV when the contact angle increased from 116° to 134°.

Preparation and characterization of PVDF/TiO2 composite ultrafiltration membranes using mixed solvents

  • Tavakolmoghadam, Maryam;Mohammadi, Toraj;Hemmati, Mahmood
    • Membrane and Water Treatment
    • /
    • v.7 no.5
    • /
    • pp.377-401
    • /
    • 2016
  • To study the effect of titanium dioxide ($TiO_2$) nanoparticles on membrane performance and structure and to explore possible improvement of using mixed solvents in the casting solution, composite polyvinylidene fluoride (PVDF) ultrafiltration membranes were prepared via immersion precipitation method using a mixture of two solvents triethyl phosphate (TEP) and dimethylacetamide (DMAc) and addition of $TiO_2$ nanoparticles. Properties of the neat and composite membranes were characterized using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), Atomic force microscopy (AFM) and contact angle and membrane porosity measurements. The neat and composite membranes were further investigated in terms of BSA rejection and flux decline in cross flow filtration experiments. Following hydrophilicity improvement of the PVDF membrane by addition of 0.25 wt.% $TiO_2$, (from $70.53^{\circ}$ to $60.5^{\circ}$) degree of flux decline due to irreversible fouling resistance of the composite membrane reduced significantly and the flux recovery ratio (FRR) of 96.85% was obtained. The results showed that using mixed solvents (DMAc/TEP) with lower content of $TiO_2$ nanoparticles (0.25 wt.%) affected the sedimentation rate of nanoparticles and consequently the distribution of nanoparticles in the casting solution and membrane formation which influenced the properties of the ultimate composite membranes.

A Simulation Tool for Ultrasonic Inspection

  • Krishnamurthy, Adarsh;Mohan, K.V.;Karthikeyan, Soumya;Krishnamurthy, C.V.;Balasubramaniam, Krishnan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.3
    • /
    • pp.153-161
    • /
    • 2006
  • A simulation program SIMULTSONIC is under development at CNDE to help determine and/or help optimize ultrasonic probe locations for inspection of complex components. SIMULTSONIC provides a ray-trace based assessment for immersion and contact modes of inspection. The code written in Visual C++ operating in Microsoft Windows environment provides an interactive user interface. In this paper, a description of the various features of SIMULTSONIC is given followed by examples illustrating the capability of SIMULTSONIC to deal with inspection of canonical objects such as pipes. In particular, the use of SIMULTSONIC in the inspection of very thin-walled pipes (with 450 urn wall thickness) is described. Ray trace based assessment was done using SIMULTSONIC to determine the standoff distance and the angle of oblique incidence for an immersion mode focused transducer. A 3-cycle Hanning window pulse was chosen for simulations. Experiments were carried out to validate the simulations. The A-scans and the associated B-Scan images obtained through simulations show good correlation with experimental results, both with the arrival time of the signal as well as with the signal amplitudes.

Aging and Recovery of HTV Silicone Rubber Used for Outdoor Insulator (옥외용 HTV 실리콘고무 절연재료의 열화 및 회복특성)

  • Yeon, Bok-Hui;Heo, Chang-Su;Jo, Han-Gu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.10
    • /
    • pp.465-472
    • /
    • 2002
  • This paper presents a study on the aging and recovery of HTV (high temperature vulcanized) silicone rubber used for outdoor insulators. UV irradiation, corona discharge and water immersion were employed as factors of the artificial aging. The effects of changes derived from these stresses on the tracking and arc resistance of silicone rubber were examined. We have investigated the aging phenomena of HTV silicone rubber by the above stresses using the surface energy calculation with contact angle measurement, solvent-extraction, and surface/volume resistivity and so on. These results showed that UV irradiation and corona discharge lead to nearly the same surface oxidation, but the percentage change of mobile low molecular weight by these stresses was different. Furthermore, the oxidized layer induced under UV irradiation restricted the recovery of hydrophobic surface. Water immersion little lowered hydrophobicity level and leaded to a loss of tracking and arc resistance. The degradation mechanism based on our results was discussed.

Relation between Surface degradation and Anti-pollution Characteristics in RTV Silicone Rubber (RTV 실리콘 고무의 표면열화와 내오손 특성과의 상관관계)

  • 연복희;이태호;허창수;이상엽
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.7
    • /
    • pp.598-606
    • /
    • 2000
  • In this paper we investigated the relation between the surface degradations and anti-pollution characteristics of Room Temperature Vulcanized(RTV) silicone rubber coating that has different roughness through immersing into saline water. We utilized several analytic techniques such as atomic force microscopy(AFM) scaning electron microscopy(SEM) contact angle Salt Deposit Density(SDD) and average leakage current under the condition of salt fog. It is found that the surface roughness of treated RTV silicone rubber increased and the hydrophobicity of sample surface decreased with increasing the duration o immersion into water due to the erosion of base polymer the melting down alumina trihydrate(ATH) and the diffusion of Low Molecular weight(LMW) fluid. Despite the roughness of surface had been increased by water immersion excellant anti-pollution and recovery characteristics were maintained and SDD saturated to 0.1~0.14mg/cm$^2$. The average leakage current under salt fog increased with surface roughness. Measurement of average leakage current will be helpful to investigate surface degradation and lifetime expectation of RTV silicone coating.

  • PDF

Analysis on the Viewing Intention of Mobile Personal Broadcasting by using Hedonic-Motivation System Adoption Model (모바일 개인방송 시청 요인 분석: HMSAM 모델을 중심으로)

  • Jae-Wan Lim;Byung-Ho Park
    • Information Systems Review
    • /
    • v.18 no.4
    • /
    • pp.89-106
    • /
    • 2016
  • The latest movement in live video streaming service is mobile personal broadcasting (MPB), which refers to consumers accessing the service through social media with mobile devices, such as smartphones and tablet PCs. This service is possible through the advancements in mobile video technology and platforms. Features such as enhanced user interaction, personalization, and real-time broadcasting, combined with a greater variety of content, have led to the development of MPB. The increase in MPB users calls for research, including that on the hedonic motivational angle. This study aims to assess MPB users' intrinsic motives through the hedonic-motivation system adoption model (HMSAM) using seven factors: joy, temporal dissociation, escapism, focused immersion, perceived ease of use, perceived usefulness and intention to watch. Survey data collected from 154 samples were analyzed with statistical techniques, such as structural equation modeling. Results showed that time dissociation, escapism, and perceived ease of use have a positive relationship with heightened enjoyment. Joy significantly affects focused immersion and intention to watch. Escapism also had a statistically significant influence on focused immersion. This study contributes to the advancement of the MPB study under the HMSAM theoretical framework and offers practical suggestions to managers to enhance MPB content viewership.

Optimized Trim and Heeling Adjustment by Using Heuristic Algorithm (휴리스틱 알고리즘을 이용한 트림 및 힐링 각도 조절 최적화)

  • HONG CHUNG You;LEE JIN UK;PARK JE WOONG
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.62-67
    • /
    • 2004
  • Many ships in voyage experience weight and buoyancy distribution change by various reasons such as change of sea water density and waves, weather condition, and consumption of fuel, provisions, etc . The weight and buoyancy distribution change can bring the ships out of allowable trim, heeling angle. In these case, the ships should adjust trim and heeling angle by shifting of liquid cargo or ballasting, deballasting of ballast tanks for recovery of initial state or for a stable voyage. But, if the adjustment is performed incorrectly, ship's safety such as longitudinal strength, intact stability, propeller immersion, wide visibility, minimum forward draft cannot be secured correctly. So it is required that the adjustment of trim and heeling angle should be planned not by human operators but by optimization computer algorithm. To make an optimized plan to adjust trim and heeling angle guaranteeing the ship's safety and quickness of process, Uk! combined mechanical analysis and optimization algorithm. The candidate algorithms for the study were heuristic algorithm, meta-heuristic algorithm and uninformed searching algorithm. These are widely used in various kinds of optimization problems. Among them, heuristic algorithm $A^\ast$ was chosen for its optimality. The $A^\ast$ algorithm is then applied for the study. Three core elements of $A^\ast$ Algorithm consists of node, operator, evaluation function were modified and redefined. And we analyzed the $A^\ast$ algorithm by considering cooperation with loading instrument installed in most ships. Finally, the algorithm has been applied to tanker ship's various conditions such as Normal Ballast Condition, Homo Design Condition, Alternate Loading Condition, Also the test results are compared and discussed to confirm the efficiency and the usefulness of the methodology developed the system.

  • PDF

The Effect of Nozzle Characteristics on the Mist-Cooling Heat Transfer (노즐특성에 따른 MIST-COOLING 열전달에 관한 실험적 연구)

  • Lee, J.W.;Kang, Y.G.;Baek, B.J.;Park, B.C.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.3
    • /
    • pp.171-178
    • /
    • 1992
  • The effect of nozzle characterristics on the mist-cooling heat transfer was investigated under the various flow conditions. Two different types of twin fluid nozzle were used, one is a $90^{\circ}$ angle tip nozzle with needle and the other is a $90^{\circ}$ angle tip non-needle nozzle. The cooling rate from the heated surface was measured and obtained the boiling curve as a function of surface temperature. An immersion sampling was employed for the measurement of droplet size of the spray. As a result of this experiment, the liquid sheet type nozzle shows better atomization when the mass ratio Mr>2.0, and collects more liquid droplets on the heated surface that results in better cooling effect. It was found that the maximum heat flux and heat transfer coefficient increased with increase in the volumetric flow rate, whereas the maximum heat flux decreased with increase in spray distance. The cooling effect depends upon the amount of collected droplet and droplet size, but it strongly depends upon the amount of collected droplet.

  • PDF