• 제목/요약/키워드: Imbalanced dataset

검색결과 54건 처리시간 0.021초

불균형 정형 데이터를 위한 SMOTE와 변형 CycleGAN 기반 하이브리드 오버샘플링 기법 (A Hybrid Oversampling Technique for Imbalanced Structured Data based on SMOTE and Adapted CycleGAN)

  • 노정담;최병구
    • 경영정보학연구
    • /
    • 제24권4호
    • /
    • pp.97-118
    • /
    • 2022
  • 이미지와 같은 비정형 데이터의 불균형 클래스 문제 해결에 있어 생산적 적대 신경망(generative adversarial network)에 기반한 오버샘플링 기법의 우수성이 알려짐에 따라 다양한 연구들이 이를 정형 데이터의 불균형 문제 해결에도 적용하기 시작하였다. 그러나 이러한 연구들은 데이터의 형태를 비정형 데이터 구조로 변경함으로써 정형 데이터의 특징을 정확하게 반영하지 못한다는 점이 문제로 지적되고 있다. 본 연구에서는 이를 해결하기 위해 순환 생산적 적대 신경망(cycle GAN)을 정형 데이터의 구조에 맞게 재구성하고 이를 SMOTE(synthetic minority oversampling technique) 기법과 결합한 하이브리드 오버샘플링 기법을 제안하였다. 특히 기존 연구와 달리 생산적 적대 신경망을 구성함에 있어 1차원 합성곱 신경망(1D-convolutional neural network)을 사용함으로써 기존 연구의 한계를 극복하고자 하였다. 본 연구에서 제안한 기법의 성능 비교를 위해 불균형 정형 데이터를 기반으로 오버샘플링을 진행하고 그 결과를 SMOTE, ADASYN(adaptive synthetic sampling) 등과 같은 기존 기법과 비교하였다. 비교 결과 차원이 많을수록, 불균형 정도가 심할수록 제안된 모형이 우수한 성능을 보이는 것으로 나타났다. 본 연구는 기존 연구와 달리 정형 데이터의 구조를 유지하면서 소수 클래스의 특징을 반영한 오버샘플링을 통해 분류의 성능을 향상시켰다는 점에서 의의가 있다.

다중 클래스 데이터셋의 메타특징이 판별 알고리즘의 성능에 미치는 영향 연구 (The Effect of Meta-Features of Multiclass Datasets on the Performance of Classification Algorithms)

  • 김정훈;김민용;권오병
    • 지능정보연구
    • /
    • 제26권1호
    • /
    • pp.23-45
    • /
    • 2020
  • 기업의 경쟁력 확보를 위해 판별 알고리즘을 활용한 의사결정 역량제고가 필요하다. 하지만 대부분 특정 문제영역에는 적합한 판별 알고리즘이 어떤 것인지에 대한 지식은 많지 않아 대부분 시행착오 형식으로 최적 알고리즘을 탐색한다. 즉, 데이터셋의 특성에 따라 어떠한 분류알고리즘을 채택하는 것이 적합한지를 판단하는 것은 전문성과 노력이 소요되는 과업이었다. 이는 메타특징(Meta-Feature)으로 불리는 데이터셋의 특성과 판별 알고리즘 성능과의 연관성에 대한 연구가 아직 충분히 이루어지지 않았기 때문이며, 더구나 다중 클래스(Multi-Class)의 특성을 반영하는 메타특징에 대한 연구 또한 거의 이루어진 바 없다. 이에 본 연구의 목적은 다중 클래스 데이터셋의 메타특징이 판별 알고리즘의 성능에 유의한 영향을 미치는지에 대한 실증 분석을 하는 것이다. 이를 위해 본 연구에서는 다중 클래스 데이터셋의 메타특징을 데이터셋의 구조와 데이터셋의 복잡도라는 두 요인으로 분류하고, 그 안에서 총 7가지 대표 메타특징을 선택하였다. 또한, 본 연구에서는 기존 연구에서 사용하던 IR(Imbalanced Ratio) 대신 시장집중도 측정 지표인 허핀달-허쉬만 지수(Herfindahl-Hirschman Index, HHI)를 메타특징에 포함하였으며, 역ReLU 실루엣 점수(Reverse ReLU Silhouette Score)도 새롭게 제안하였다. UCI Machine Learning Repository에서 제공하는 복수의 벤치마크 데이터셋으로 다양한 변환 데이터셋을 생성한 후에 대표적인 여러 판별 알고리즘에 적용하여 성능 비교 및 가설 검증을 수행하였다. 그 결과 대부분의 메타특징과 판별 성능 사이의 유의한 관련성이 확인되었으며, 일부 예외적인 부분에 대한 고찰을 하였다. 본 연구의 실험 결과는 향후 메타특징에 따른 분류알고리즘 추천 시스템에 활용할 것이다.

불균형 데이터 집합에서의 의사결정나무 추론: 종합 병원의 건강 보험료 청구 심사 사례 (Decision Tree Induction with Imbalanced Data Set: A Case of Health Insurance Bill Audit in a General Hospital)

  • 허준;김종우
    • 경영정보학연구
    • /
    • 제9권1호
    • /
    • pp.45-65
    • /
    • 2007
  • 다른 산업과 달리 병원/의료 산업에서는 건강 보험료 심사 평가라는 독특한 검증 과정이 필수적으로 있게 된다. 건강 보험료 심사 평가는 병원의 수익 문제 뿐 아니라 적정한 진료행위를 하는 병원이라는 이미지와도 맞물려 매우 중요한 분야이며, 특히 대형 종합병원일수록 이 부분에 많은 심사관련 인력들을 투입하여, 병원의 수익과 명예를 위해서 업무를 수행하고 있다. 본 논문은 이러한 건강보험료 청구 심사 과정에서, 사전에 수많은 진료 청구 건 중 심사 평가에서 삭감이 될 수 있는 진료 청구 건을 데이터 마이닝을 통해서 발견하여, 사전의 대비를 철저히 하고자 하는 한 국내 대형 종합병원의 사례를 소개하고자 한다. 데이터 마이닝을 적용함에 있어, 주요한 문제점 중 하나는 바로 지도학습 기법을 적용하기에 곤란한 데이터 불균형 문제가 발생하는 것이다. 이런 불균형 문제를 해소하고, 비교 조건 중에 가장 효율적인 삭감 예상 진료 건 탐지 모델을 만들어 내기 위하여, 데이터 불균형 문제의 기본 해법인 Sampling과 오분류 비용의 다양한 혼합적인 적용을 통하여, 적합한 조건을 가지는 의사결정 나무 모델을 도출하였다.

Recognition of damage pattern and evolution in CFRP cable with a novel bonding anchorage by acoustic emission

  • Wu, Jingyu;Lan, Chengming;Xian, Guijun;Li, Hui
    • Smart Structures and Systems
    • /
    • 제21권4호
    • /
    • pp.421-433
    • /
    • 2018
  • Carbon fiber reinforced polymer (CFRP) cable has good mechanical properties and corrosion resistance. However, the anchorage of CFRP cable is a big issue due to the anisotropic property of CFRP material. In this article, a high-efficient bonding anchorage with novel configuration is developed for CFRP cables. The acoustic emission (AE) technique is employed to evaluate the performance of anchorage in the fatigue test and post-fatigue ultimate bearing capacity test. The obtained AE signals are analyzed by using a combination of unsupervised K-means clustering and supervised K-nearest neighbor classification (K-NN) for quantifying the performance of the anchorage and damage evolutions. An AE feature vector (including both frequency and energy characteristics of AE signal) for clustering analysis is proposed and the under-sampling approaches are employed to regress the influence of the imbalanced classes distribution in AE dataset for improving clustering quality. The results indicate that four classes exist in AE dataset, which correspond to the shear deformation of potting compound, matrix cracking, fiber-matrix debonding and fiber fracture in CFRP bars. The AE intensity released by the deformation of potting compound is very slight during the whole loading process and no obvious premature damage observed in CFRP bars aroused by anchorage effect at relative low stress level, indicating the anchorage configuration in this study is reliable.

FRM: Foundation-policy Recommendation Model to Improve the Performance of NAND Flash Memory

  • Won Ho Lee;Jun-Hyeong Choi;Jong Wook Kwak
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권8호
    • /
    • pp.1-10
    • /
    • 2023
  • 최근, 낸드 플래시 메모리는 비휘발성, 높은 집적도, 높은 내구성으로 인하여 다양한 컴퓨터 시스템에서 자기 디스크를 대체하고 있지만 연산 처리 속도 불균형 및 수명 제한과 같은 한계를 가진다. 따라서 낸드 플래시 메모리의 단점을 극복하고자 디스크 버퍼 관리정책들이 연구되고 있다. 비록 이러한 관리정책들이 다양한 작업 환경과 응용 프로그램의 실행 특성을 반영하는 것은 명확하나, 이들을 위한 기초 관리 정책 결정 방식에 대한 연구는 그에 비하면 미흡하다. 본 논문에서는 낸드 플래시 메모리를 효율적으로 활용하기 위한 기초 관리정책 제안 모델인 FRM을 소개한다. FRM은 워크로드를 다양한 특성에 따라 분석하고 낸드 플래시 메모리가 가지는 특성들과 조합하는 모델로, 이를 통해 작업 환경에 가장 알맞은 기초 관리 정책을 제시한다. 결과적으로 제안하는 모델은 학습 데이터와 검증 데이터에 대해 Accuracy와 Weighted Average 측면에서 각각 92.85%와 88.97%의 기초 관리정책 예측 정확도를 보여주었다.

가중치 VAE 오버샘플링(W-VAE)을 이용한 보안데이터셋 샘플링 기법 연구 (A Data Sampling Technique for Secure Dataset Using Weight VAE Oversampling(W-VAE))

  • 강한바다;이재우
    • 한국정보통신학회논문지
    • /
    • 제26권12호
    • /
    • pp.1872-1879
    • /
    • 2022
  • 최근 인공지능 기술이 발전하면서 해킹 공격을 탐지하기 위해 인공지능을 이용하려는 연구가 활발히 진행되고 있다. 하지만, 인공지능 모델 개발에 핵심인 학습데이터를 구성하는데 있어서 보안데이터가 대표적인 불균형 데이터라는 점이 큰 장애물로 인식되고 있다. 이에 본 눈문에서는 오버샘플링을 위한 데이터 추출에 딥러닝 생성 모델인 VAE를 적용하고 K-NN을 이용한 가중치 계산을 통해 클래스별 오버샘플링 개수를 설정하여 샘플링을 하는 W-VAE 오버샘플링 기법을 제안한다. 본 논문에서는 공개 네트워크 보안 데이터셋인 NSL-KDD를 통해 ROS, SMOTE, ADASYN 등 총 5가지 오버샘플링 기법을 적용하였으며 본 논문에서 제안한 오버샘플링 기법이 F1-Score 평가지표를 통해 기존 오버샘플링 기법과 비교하여 가장 효과적인 샘플링 기법임을 증명하였다.

Training Data Sets Construction from Large Data Set for PCB Character Recognition

  • NDAYISHIMIYE, Fabrice;Gang, Sumyung;Lee, Joon Jae
    • Journal of Multimedia Information System
    • /
    • 제6권4호
    • /
    • pp.225-234
    • /
    • 2019
  • Deep learning has become increasingly popular in both academic and industrial areas nowadays. Various domains including pattern recognition, Computer vision have witnessed the great power of deep neural networks. However, current studies on deep learning mainly focus on quality data sets with balanced class labels, while training on bad and imbalanced data set have been providing great challenges for classification tasks. We propose in this paper a method of data analysis-based data reduction techniques for selecting good and diversity data samples from a large dataset for a deep learning model. Furthermore, data sampling techniques could be applied to decrease the large size of raw data by retrieving its useful knowledge as representatives. Therefore, instead of dealing with large size of raw data, we can use some data reduction techniques to sample data without losing important information. We group PCB characters in classes and train deep learning on the ResNet56 v2 and SENet model in order to improve the classification performance of optical character recognition (OCR) character classifier.

Image-to-Image Translation with GAN for Synthetic Data Augmentation in Plant Disease Datasets

  • Nazki, Haseeb;Lee, Jaehwan;Yoon, Sook;Park, Dong Sun
    • 스마트미디어저널
    • /
    • 제8권2호
    • /
    • pp.46-57
    • /
    • 2019
  • In recent research, deep learning-based methods have achieved state-of-the-art performance in various computer vision tasks. However, these methods are commonly supervised, and require huge amounts of annotated data to train. Acquisition of data demands an additional costly effort, particularly for the tasks where it becomes challenging to obtain large amounts of data considering the time constraints and the requirement of professional human diligence. In this paper, we present a data level synthetic sampling solution to learn from small and imbalanced data sets using Generative Adversarial Networks (GANs). The reason for using GANs are the challenges posed in various fields to manage with the small datasets and fluctuating amounts of samples per class. As a result, we present an approach that can improve learning with respect to data distributions, reducing the partiality introduced by class imbalance and hence shifting the classification decision boundary towards more accurate results. Our novel method is demonstrated on a small dataset of 2789 tomato plant disease images, highly corrupted with class imbalance in 9 disease categories. Moreover, we evaluate our results in terms of different metrics and compare the quality of these results for distinct classes.

Centroid and Nearest Neighbor based Class Imbalance Reduction with Relevant Feature Selection using Ant Colony Optimization for Software Defect Prediction

  • B., Kiran Kumar;Gyani, Jayadev;Y., Bhavani;P., Ganesh Reddy;T, Nagasai Anjani Kumar
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.1-10
    • /
    • 2022
  • Nowadays software defect prediction (SDP) is most active research going on in software engineering. Early detection of defects lowers the cost of the software and also improves reliability. Machine learning techniques are widely used to create SDP models based on programming measures. The majority of defect prediction models in the literature have problems with class imbalance and high dimensionality. In this paper, we proposed Centroid and Nearest Neighbor based Class Imbalance Reduction (CNNCIR) technique that considers dataset distribution characteristics to generate symmetry between defective and non-defective records in imbalanced datasets. The proposed approach is compared with SMOTE (Synthetic Minority Oversampling Technique). The high-dimensionality problem is addressed using Ant Colony Optimization (ACO) technique by choosing relevant features. We used nine different classifiers to analyze six open-source software defect datasets from the PROMISE repository and seven performance measures are used to evaluate them. The results of the proposed CNNCIR method with ACO based feature selection reveals that it outperforms SMOTE in the majority of cases.

Data anomaly detection for structural health monitoring using a combination network of GANomaly and CNN

  • Liu, Gaoyang;Niu, Yanbo;Zhao, Weijian;Duan, Yuanfeng;Shu, Jiangpeng
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.53-62
    • /
    • 2022
  • The deployment of advanced structural health monitoring (SHM) systems in large-scale civil structures collects large amounts of data. Note that these data may contain multiple types of anomalies (e.g., missing, minor, outlier, etc.) caused by harsh environment, sensor faults, transfer omission and other factors. These anomalies seriously affect the evaluation of structural performance. Therefore, the effective analysis and mining of SHM data is an extremely important task. Inspired by the deep learning paradigm, this study develops a novel generative adversarial network (GAN) and convolutional neural network (CNN)-based data anomaly detection approach for SHM. The framework of the proposed approach includes three modules : (a) A three-channel input is established based on fast Fourier transform (FFT) and Gramian angular field (GAF) method; (b) A GANomaly is introduced and trained to extract features from normal samples alone for class-imbalanced problems; (c) Based on the output of GANomaly, a CNN is employed to distinguish the types of anomalies. In addition, a dataset-oriented method (i.e., multistage sampling) is adopted to obtain the optimal sampling ratios between all different samples. The proposed approach is tested with acceleration data from an SHM system of a long-span bridge. The results show that the proposed approach has a higher accuracy in detecting the multi-pattern anomalies of SHM data.