• 제목/요약/키워드: Imbalanced dataset

검색결과 54건 처리시간 0.024초

Using weighted Support Vector Machine to address the imbalanced classes problem of Intrusion Detection System

  • Alabdallah, Alaeddin;Awad, Mohammed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권10호
    • /
    • pp.5143-5158
    • /
    • 2018
  • Improving the intrusion detection system (IDS) is a pressing need for cyber security world. With the growth of computer networks, there are constantly daily new attacks. Machine Learning (ML) is one of the most important fields which have great contribution to address the intrusion detection issues. One of these issues relates to the imbalance of the diverse classes of network traffic. Accuracy paradox is a result of training ML algorithm with imbalanced classes. Most of the previous efforts concern improving the overall accuracy of these models which is truly important. However, even they improved the total accuracy of the system; it fell in the accuracy paradox. The seriousness of the threat caused by the minor classes and the pitfalls of the previous efforts to address this issue is the motive for this work. In this paper, we consolidated stratified sampling, cost function and weighted Support Vector Machine (WSVM) method to address the accuracy paradox of ID problem. This model achieved good results of total accuracy and superior results in the small classes like the User-To-Remote and Remote-To-Local attacks using the improved version of the benchmark dataset KDDCup99 which is called NSL-KDD.

클래스 불균형 데이터를 이용한 나이브 베이즈 분류기 기반의 이상전파에코 식별방법 (Naive Bayes Classifier based Anomalous Propagation Echo Identification using Class Imbalanced Data)

  • 이한수;김성신
    • 한국정보통신학회논문지
    • /
    • 제20권6호
    • /
    • pp.1063-1068
    • /
    • 2016
  • 이상전파에코는 대기 관측을 위해서 사용되는 레이더 전파가 온도나 습도에 의해서 발생하는 이상굴절에 의해서 발생하는 신호로, 지상에 설치된 기상레이더에 자주 발생하는 비기상에코이다. 기상예보의 정확도를 높이기 위해서는 레이더 데이터의 정확한 분석이 필수적이기 때문에 이상전파에코의 제거에 대한 연구가 수행되어 오고 있다. 본 논문에서는 다양한 레이더 관측변수를 나이브 베이지안 분류기에 적용하여 이상전파에코를 식별하는 방법에 대한 연구를 수행하였다. 수집된 데이터가 클래스 불균형 문제를 내포하고 있는 점을 고려하여, SMOTE 기법을 이용하였다. 실제 이상전파에코 발생 사례를 통해, 제안한 방법이 성능을 표출하는 것을 확인하였다.

랜덤포레스트를 이용한 국내 학술지 논문의 자동분류에 관한 연구 (An Analytical Study on Automatic Classification of Domestic Journal articles Using Random Forest)

  • 김판준
    • 정보관리학회지
    • /
    • 제36권2호
    • /
    • pp.57-77
    • /
    • 2019
  • 대표적인 앙상블 기법으로서 랜덤포레스트(RF)를 문헌정보학 분야의 학술지 논문에 대한 자동분류에 적용하였다. 특히, 국내 학술지 논문에 주제 범주를 자동 할당하는 분류 성능 측면에서 트리 수, 자질선정, 학습집합 크기 등 주요 요소들에 대한 다각적인 실험을 수행하였다. 이를 통해, 실제 환경의 불균형 데이터세트(imbalanced dataset)에 대하여 랜덤포레스트(RF)의 성능을 최적화할 수 있는 방안을 모색하였다. 결과적으로 국내 학술지 논문의 자동분류에서 랜덤포레스트(RF)는 트리 수 구간 100~1000(C)과 카이제곱통계량(CHI)으로 선정한 소규모의 자질집합(10%), 대부분의 학습집합(9~10년)을 사용하는 경우에 가장 좋은 분류 성능을 기대할 수 있는 것으로 나타났다.

TANFIS Classifier Integrated Efficacious Aassistance System for Heart Disease Prediction using CNN-MDRP

  • Bhaskaru, O.;Sreedevi, M.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.171-176
    • /
    • 2022
  • A dramatic rise in the number of people dying from heart disease has prompted efforts to find a way to identify it sooner using efficient approaches. A variety of variables contribute to the condition and even hereditary factors. The current estimate approaches use an automated diagnostic system that fails to attain a high level of accuracy because it includes irrelevant dataset information. This paper presents an effective neural network with convolutional layers for classifying clinical data that is highly class-imbalanced. Traditional approaches rely on massive amounts of data rather than precise predictions. Data must be picked carefully in order to achieve an earlier prediction process. It's a setback for analysis if the data obtained is just partially complete. However, feature extraction is a major challenge in classification and prediction since increased data increases the training time of traditional machine learning classifiers. The work integrates the CNN-MDRP classifier (convolutional neural network (CNN)-based efficient multimodal disease risk prediction with TANFIS (tuned adaptive neuro-fuzzy inference system) for earlier accurate prediction. Perform data cleaning by transforming partial data to informative data from the dataset in this project. The recommended TANFIS tuning parameters are then improved using a Laplace Gaussian mutation-based grasshopper and moth flame optimization approach (LGM2G). The proposed approach yields a prediction accuracy of 98.40 percent when compared to current algorithms.

Experimental Analysis of Bankruptcy Prediction with SHAP framework on Polish Companies

  • Tuguldur Enkhtuya;Dae-Ki Kang
    • International journal of advanced smart convergence
    • /
    • 제12권1호
    • /
    • pp.53-58
    • /
    • 2023
  • With the fast development of artificial intelligence day by day, users are demanding explanations about the results of algorithms and want to know what parameters influence the results. In this paper, we propose a model for bankruptcy prediction with interpretability using the SHAP framework. SHAP (SHAPley Additive exPlanations) is framework that gives a visualized result that can be used for explanation and interpretation of machine learning models. As a result, we can describe which features are important for the result of our deep learning model. SHAP framework Force plot result gives us top features which are mainly reflecting overall model score. Even though Fully Connected Neural Networks are a "black box" model, Shapley values help us to alleviate the "black box" problem. FCNNs perform well with complex dataset with more than 60 financial ratios. Combined with SHAP framework, we create an effective model with understandable interpretation. Bankruptcy is a rare event, then we avoid imbalanced dataset problem with the help of SMOTE. SMOTE is one of the oversampling technique that resulting synthetic samples are generated for the minority class. It uses K-nearest neighbors algorithm for line connecting method in order to producing examples. We expect our model results assist financial analysts who are interested in forecasting bankruptcy prediction of companies in detail.

흉부 X-선 영상을 이용한 14 가지 흉부 질환 분류를 위한 Ensemble Knowledge Distillation (Ensemble Knowledge Distillation for Classification of 14 Thorax Diseases using Chest X-ray Images)

  • 호티키우칸;전영훈;곽정환
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.313-315
    • /
    • 2021
  • Timely and accurate diagnosis of lung diseases using Chest X-ray images has been gained much attention from the computer vision and medical imaging communities. Although previous studies have presented the capability of deep convolutional neural networks by achieving competitive binary classification results, their models were seemingly unreliable to effectively distinguish multiple disease groups using a large number of x-ray images. In this paper, we aim to build an advanced approach, so-called Ensemble Knowledge Distillation (EKD), to significantly boost the classification accuracies, compared to traditional KD methods by distilling knowledge from a cumbersome teacher model into an ensemble of lightweight student models with parallel branches trained with ground truth labels. Therefore, learning features at different branches of the student models could enable the network to learn diverse patterns and improve the qualify of final predictions through an ensemble learning solution. Although we observed that experiments on the well-established ChestX-ray14 dataset showed the classification improvements of traditional KD compared to the base transfer learning approach, the EKD performance would be expected to potentially enhance classification accuracy and model generalization, especially in situations of the imbalanced dataset and the interdependency of 14 weakly annotated thorax diseases.

  • PDF

단어선택과 SMOTE 알고리즘을 이용한 불균형 텍스트 데이터의 소수 범주 예측성능 향상 기법 (Improving minority prediction performance of support vector machine for imbalanced text data via feature selection and SMOTE)

  • 김종찬;장성준;손원
    • 응용통계연구
    • /
    • 제37권4호
    • /
    • pp.395-410
    • /
    • 2024
  • 텍스트 데이터는 일반적으로 많은 다양한 단어들로 구성되어 있다. 평범한 텍스트 데이터의 경우에도 수만 개의 서로 다른 단어들을 포함하고 있는 경우를 흔히 관찰할 수 있으며 방대한 양의 텍스트 데이터에서는 수십만 개에 이르는 고유한 단어들이 포함되어 있는 경우도 있다. 텍스트 데이터를 전처리하여 문서-단어 행렬을 만드는 경우 고유한 단어를 하나의 변수로 간주하게 되는데 이렇게 많은 단어들을 각각 하나의 변수로 간주한다면 텍스트 데이터는 매우 많은 변수를 가진 데이터로 볼 수 있다. 한편, 텍스트 데이터의 분류 문제에서는 분류의 목표변수가 되는 범주의 비중에 큰 차이가 나는 불균형 데이터 문제를 자주 접하게 된다. 이렇게 범주의 비중에 큰 차이가 있는 불균형 데이터의 경우에는 일반적인 분류모형의 성능이 크게 저하될 수 있다는 사실이 잘 알려져 있다. 따라서 불균형 데이터에서의 분류 성능을 개선하기 위해 소수집단의 관측값들을 합성하여 소수집단에 포함되는 새로운 관측값을 생성하는 합성과표집기법(synthetic over-sampling technique; SMOTE) 등의 알고리즘을 적용할 수 있다. SMOTE는 k-최근접이웃(k-nearset neighbor; kNN) 알고리즘을 이용하여 새로운 합성 데이터를 생성하는데 텍스트 데이터와 같이 많은 변수를 가진 데이터의 경우에는 오차가 누적되어 kNN의 성능에 문제가 생길 수 있다. 이 논문에서는 변수선택을 통해 변수가 많은 불균형 텍스트 데이터를 오차가 축소된 공간에 표현하고 이 공간에서 새로운 합성 관측값을 생성하여 불균형 텍스트 데이터에서 소수 범주에 대한 SVM 분류모형의 예측 성능을 향상시키는 방법을 제안한다.

Fire Detection Based on Image Learning by Collaborating CNN-SVM with Enhanced Recall

  • Yongtae Do
    • 센서학회지
    • /
    • 제33권3호
    • /
    • pp.119-124
    • /
    • 2024
  • Effective fire sensing is important to protect lives and property from the disaster. In this paper, we present an intelligent visual sensing method for detecting fires based on machine learning techniques. The proposed method involves a two-step process. In the first step, fire and non-fire images are used to train a convolutional neural network (CNN), and in the next step, feature vectors consisting of 256 values obtained from the CNN are used for the learning of a support vector machine (SVM). Linear and nonlinear SVMs with different parameters are intensively tested. We found that the proposed hybrid method using an SVM with a linear kernel effectively increased the recall rate of fire image detection without compromising detection accuracy when an imbalanced dataset was used for learning. This is a major contribution of this study because recall is important, particularly in the sensing of disaster situations such as fires. In our experiments, the proposed system exhibited an accuracy of 96.9% and a recall rate of 92.9% for test image data.

불균형 데이터 환경에서 로지스틱 회귀모형을 이용한 Cochlodinium polykrikoides 적조 탐지 기법 연구 (Study on Detection Technique for Cochlodinium polykrikoides Red tide using Logistic Regression Model under Imbalanced Data)

  • 박수호;김흥민;김범규;황도현;엥흐자리갈 운자야;윤홍주
    • 한국전자통신학회논문지
    • /
    • 제13권6호
    • /
    • pp.1353-1364
    • /
    • 2018
  • 본 연구에서는 불균형 데이터 환경에서 기계학습 기법의 한 갈래인 로지스틱 회귀모형을 이용하여 인공위성 영상에서 Cochlodinium polykrikoides 적조 픽셀을 탐지하는 방법을 제안한다. 학습자료로 적조, 청수, 탁수 해역에서 추출된 수출광량 분광 프로파일을 활용하였다. 전체 데이터셋의 70%를 추출하여 모형 학습에 활용하였으며, 나머지 30%를 이용하여 모형의 분류 정확도를 평가하였다. 이 때, 청수와 탁수에 비해 자료 수가 상대적으로 적은 적조의 분광 프로파일에 백색 잡음을 추가하여 오버샘플링을 하여 불균형 데이터 문제를 해결하였다. 정확도 평가 결과 본 연구에서 제안하는 알고리즘은 약 94%의 분류 정확도를 보였다.

자질선정을 통한 국내 학술지 논문의 자동분류에 관한 연구 (An Experimental Study on the Automatic Classification of Korean Journal Articles through Feature Selection)

  • 김판준
    • 정보관리학회지
    • /
    • 제39권1호
    • /
    • pp.69-90
    • /
    • 2022
  • 국내 학술연구의 동향을 구체적으로 파악하여 연구개발 활동의 체계적인 지원 및 평가는 물론 현재와 미래의 연구 방향을 설정할 수 있는 기초 데이터로서, 개별 학술지 논문에 표준화된 주제 범주(통제키워드)를 부여할 수 있는 효율적인 방안을 모색하였다. 이를 위해 한국연구재단 「학술연구분야분류표」 상의 분류 범주를 국내학술지 논문에 자동 할당하는 과정에서, 자질선정 기법을 중심으로 자동분류의 성능에 영향을 미치는 주요 요소들에 대한 다각적인 실험을 수행하였다. 그 결과, 실제 환경의 불균형 데이터세트(imbalanced dataset)인 국내 학술지 논문의 자동분류에서는 보다 단순한 분류기와 자질선정 기법, 그리고 비교적 소규모의 학습집합을 사용하여 상당히 좋은 수준의 성능을 기대할 수 있는 것으로 나타났다.