• 제목/요약/키워드: Imbalanced class

Search Result 75, Processing Time 0.029 seconds

Centroid and Nearest Neighbor based Class Imbalance Reduction with Relevant Feature Selection using Ant Colony Optimization for Software Defect Prediction

  • B., Kiran Kumar;Gyani, Jayadev;Y., Bhavani;P., Ganesh Reddy;T, Nagasai Anjani Kumar
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.1-10
    • /
    • 2022
  • Nowadays software defect prediction (SDP) is most active research going on in software engineering. Early detection of defects lowers the cost of the software and also improves reliability. Machine learning techniques are widely used to create SDP models based on programming measures. The majority of defect prediction models in the literature have problems with class imbalance and high dimensionality. In this paper, we proposed Centroid and Nearest Neighbor based Class Imbalance Reduction (CNNCIR) technique that considers dataset distribution characteristics to generate symmetry between defective and non-defective records in imbalanced datasets. The proposed approach is compared with SMOTE (Synthetic Minority Oversampling Technique). The high-dimensionality problem is addressed using Ant Colony Optimization (ACO) technique by choosing relevant features. We used nine different classifiers to analyze six open-source software defect datasets from the PROMISE repository and seven performance measures are used to evaluate them. The results of the proposed CNNCIR method with ACO based feature selection reveals that it outperforms SMOTE in the majority of cases.

Enhancing Malware Detection with TabNetClassifier: A SMOTE-based Approach

  • Rahimov Faridun;Eul Gyu Im
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.294-297
    • /
    • 2024
  • Malware detection has become increasingly critical with the proliferation of end devices. To improve detection rates and efficiency, the research focus in malware detection has shifted towards leveraging machine learning and deep learning approaches. This shift is particularly relevant in the context of the widespread adoption of end devices, including smartphones, Internet of Things devices, and personal computers. Machine learning techniques are employed to train models on extensive datasets and evaluate various features, while deep learning algorithms have been extensively utilized to achieve these objectives. In this research, we introduce TabNet, a novel architecture designed for deep learning with tabular data, specifically tailored for enhancing malware detection techniques. Furthermore, the Synthetic Minority Over-Sampling Technique is utilized in this work to counteract the challenges posed by imbalanced datasets in machine learning. SMOTE efficiently balances class distributions, thereby improving model performance and classification accuracy. Our study demonstrates that SMOTE can effectively neutralize class imbalance bias, resulting in more dependable and precise machine learning models.

Image-to-Image Translation with GAN for Synthetic Data Augmentation in Plant Disease Datasets

  • Nazki, Haseeb;Lee, Jaehwan;Yoon, Sook;Park, Dong Sun
    • Smart Media Journal
    • /
    • v.8 no.2
    • /
    • pp.46-57
    • /
    • 2019
  • In recent research, deep learning-based methods have achieved state-of-the-art performance in various computer vision tasks. However, these methods are commonly supervised, and require huge amounts of annotated data to train. Acquisition of data demands an additional costly effort, particularly for the tasks where it becomes challenging to obtain large amounts of data considering the time constraints and the requirement of professional human diligence. In this paper, we present a data level synthetic sampling solution to learn from small and imbalanced data sets using Generative Adversarial Networks (GANs). The reason for using GANs are the challenges posed in various fields to manage with the small datasets and fluctuating amounts of samples per class. As a result, we present an approach that can improve learning with respect to data distributions, reducing the partiality introduced by class imbalance and hence shifting the classification decision boundary towards more accurate results. Our novel method is demonstrated on a small dataset of 2789 tomato plant disease images, highly corrupted with class imbalance in 9 disease categories. Moreover, we evaluate our results in terms of different metrics and compare the quality of these results for distinct classes.

Comparison of Loss Function for Multi-Class Classification of Collision Events in Imbalanced Black-Box Video Data (불균형 블랙박스 동영상 데이터에서 충돌 상황의 다중 분류를 위한 손실 함수 비교)

  • Euisang Lee;Seokmin Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.49-54
    • /
    • 2024
  • Data imbalance is a common issue encountered in classification problems, stemming from a significant disparity in the number of samples between classes within the dataset. Such data imbalance typically leads to problems in classification models, including overfitting, underfitting, and misinterpretation of performance metrics. Methods to address this issue include resampling, augmentation, regularization techniques, and adjustment of loss functions. In this paper, we focus on loss function adjustment, particularly comparing the performance of various configurations of loss functions (Cross Entropy, Balanced Cross Entropy, two settings of Focal Loss: 𝛼 = 1 and 𝛼 = Balanced, Asymmetric Loss) on Multi-Class black-box video data with imbalance issues. The comparison is conducted using the I3D, and R3D_18 models.

Network Intrusion Detection Using One-Class Models (단일 클래스 모델을 활용한 네트워크 침입 탐지)

  • Byeongjun Min;Daekyeong Park
    • Convergence Security Journal
    • /
    • v.24 no.3
    • /
    • pp.13-21
    • /
    • 2024
  • Recently, with the rapid expansion of networks driven by the advancements of the Fourth Industrial Revolution, cybersecurity threats are becoming increasingly severe. Traditional signature-based Network Intrusion Detection Systems (NIDS) are effective in detecting known attacks but show limitations when faced with new threats such as Advanced Persistent Threats (APT). Additionally, deep learning models based on supervised learning can lead to biased decision boundaries due to the imbalanced nature of network traffic data, where normal traffic vastly outnumbers malicious traffic. To address these challenges, this paper proposes a network intrusion detection method based on one-class models that learn only from normal data to identify abnormal traffic. The effectiveness of this approach is validated through experiments using the Deep SVDD and MemAE models on the NSL-KDD dataset. Comparative analysis with supervised learning models demonstrates that the proposed method offers superior adaptability and performance in real-world scenarios.

Improving BMI Classification Accuracy with Oversampling and 3-D Gait Analysis on Imbalanced Class Data

  • Beom Kwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.9-23
    • /
    • 2024
  • In this study, we propose a method to improve the classification accuracy of body mass index (BMI) estimation techniques based on three-dimensional gait data. In previous studies on BMI estimation techniques, the classification accuracy was only about 60%. In this study, we identify the reasons for the low BMI classification accuracy. According to our analysis, the reason is the use of the undersampling technique to address the class imbalance problem in the gait dataset. We propose applying oversampling instead of undersampling to solve the class imbalance issue. We also demonstrate the usefulness of anthropometric and spatiotemporal features in gait data-based BMI estimation techniques. Previous studies evaluated the usefulness of anthropometric and spatiotemporal features in the presence of undersampling techniques and reported that their combined use leads to lower BMI estimation performance than when using either feature alone. However, our results show that using both features together and applying an oversampling technique achieves state-of-the-art performance with 92.92% accuracy in the BMI estimation problem.

Using Machine Learning Technique for Analytical Customer Loyalty

  • Mohamed M. Abbassy
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.190-198
    • /
    • 2023
  • To enhance customer satisfaction for higher profits, an e-commerce sector can establish a continuous relationship and acquire new customers. Utilize machine-learning models to analyse their customer's behavioural evidence to produce their competitive advantage to the e-commerce platform by helping to improve overall satisfaction. These models will forecast customers who will churn and churn causes. Forecasts are used to build unique business strategies and services offers. This work is intended to develop a machine-learning model that can accurately forecast retainable customers of the entire e-commerce customer data. Developing predictive models classifying different imbalanced data effectively is a major challenge in collected data and machine learning algorithms. Build a machine learning model for solving class imbalance and forecast customers. The satisfaction accuracy is used for this research as evaluation metrics. This paper aims to enable to evaluate the use of different machine learning models utilized to forecast satisfaction. For this research paper are selected three analytical methods come from various classifications of learning. Classifier Selection, the efficiency of various classifiers like Random Forest, Logistic Regression, SVM, and Gradient Boosting Algorithm. Models have been used for a dataset of 8000 records of e-commerce websites and apps. Results indicate the best accuracy in determining satisfaction class with both gradient-boosting algorithm classifications. The results showed maximum accuracy compared to other algorithms, including Gradient Boosting Algorithm, Support Vector Machine Algorithm, Random Forest Algorithm, and logistic regression Algorithm. The best model developed for this paper to forecast satisfaction customers and accuracy achieve 88 %.

Prediction of Protein-Protein Interaction Sites Based on 3D Surface Patches Using SVM (SVM 모델을 이용한 3차원 패치 기반 단백질 상호작용 사이트 예측기법)

  • Park, Sung-Hee;Hansen, Bjorn
    • The KIPS Transactions:PartD
    • /
    • v.19D no.1
    • /
    • pp.21-28
    • /
    • 2012
  • Predication of protein interaction sites for monomer structures can reduce the search space for protein docking and has been regarded as very significant for predicting unknown functions of proteins from their interacting proteins whose functions are known. In the other hand, the prediction of interaction sites has been limited in crystallizing weakly interacting complexes which are transient and do not form the complexes stable enough for obtaining experimental structures by crystallization or even NMR for the most important protein-protein interactions. This work reports the calculation of 3D surface patches of complex structures and their properties and a machine learning approach to build a predictive model for the 3D surface patches in interaction and non-interaction sites using support vector machine. To overcome classification problems for class imbalanced data, we employed an under-sampling technique. 9 properties of the patches were calculated from amino acid compositions and secondary structure elements. With 10 fold cross validation, the predictive model built from SVM achieved an accuracy of 92.7% for classification of 3D patches in interaction and non-interaction sites from 147 complexes.

Development of Prediction Models for Fatal Accidents using Proactive Information in Construction Sites (건설현장의 공사사전정보를 활용한 사망재해 예측 모델 개발)

  • Choi, Seung Ju;Kim, Jin Hyun;Jung, Kihyo
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.3
    • /
    • pp.31-39
    • /
    • 2021
  • In Korea, more than half of work-related fatalities have occurred on construction sites. To reduce such occupational accidents, safety inspection by government agencies is essential in construction sites that present a high risk of serious accidents. To address this issue, this study developed risk prediction models of serious accidents in construction sites using five machine learning methods: support vector machine, random forest, XGBoost, LightGBM, and AutoML. To this end, 15 proactive information (e.g., number of stories and period of construction) that are usually available prior to construction were considered and two over-sampling techniques (SMOTE and ADASYN) were used to address the problem of class-imbalanced data. The results showed that all machine learning methods achieved 0.876~0.941 in the F1-score with the adoption of over-sampling techniques. LightGBM with ADASYN yielded the best prediction performance in both the F1-score (0.941) and the area under the ROC curve (0.941). The prediction models revealed four major features: number of stories, period of construction, excavation depth, and height. The prediction models developed in this study can be useful both for government agencies in prioritizing construction sites for safety inspection and for construction companies in establishing pre-construction preventive measures.

Imbalanced Data Improvement Techniques Based on SMOTE and Light GBM (SMOTE와 Light GBM 기반의 불균형 데이터 개선 기법)

  • Young-Jin, Han;In-Whee, Joe
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.12
    • /
    • pp.445-452
    • /
    • 2022
  • Class distribution of unbalanced data is an important part of the digital world and is a significant part of cybersecurity. Abnormal activity of unbalanced data should be found and problems solved. Although a system capable of tracking patterns in all transactions is needed, machine learning with disproportionate data, which typically has abnormal patterns, can ignore and degrade performance for minority layers, and predictive models can be inaccurately biased. In this paper, we predict target variables and improve accuracy by combining estimates using Synthetic Minority Oversampling Technique (SMOTE) and Light GBM algorithms as an approach to address unbalanced datasets. Experimental results were compared with logistic regression, decision tree, KNN, Random Forest, and XGBoost algorithms. The performance was similar in accuracy and reproduction rate, but in precision, two algorithms performed at Random Forest 80.76% and Light GBM 97.16%, and in F1-score, Random Forest 84.67% and Light GBM 91.96%. As a result of this experiment, it was confirmed that Light GBM's performance was similar without deviation or improved by up to 16% compared to five algorithms.