• Title/Summary/Keyword: Imbalanced class

Search Result 75, Processing Time 0.028 seconds

Development of a Default Prediction Model for Vulnerable Populations Using Imbalanced Data Analysis (불균형 데이터 처리 기반의 취약계층 채무불이행 예측모델 개발)

  • Lee, Jong Hwa
    • The Journal of Information Systems
    • /
    • v.33 no.3
    • /
    • pp.175-185
    • /
    • 2024
  • Purpose This study aims to analyze the relationship between consumption patterns and default risk among financially vulnerable households in a rapidly changing economic environment. Financially vulnerable households are more susceptible to economic shocks, and their consumption patterns can significantly contribute to an increased risk of default. Therefore, this study seeks to provide a systematic approach to predict and manage these risks in advance. Design/methodology/approach The study utilizes data from the Korea Welfare Panel Study (KOWEPS) to analyze the consumption patterns and default status of financially vulnerable households. To address the issue of data imbalance, sampling techniques such as SMOTE, SMOTE-ENN, and SMOTE-Tomek Links were applied. Various machine learning algorithms, including Logistic Regression, Decision Tree, Random Forest, and Support Vector Machine (SVM), were employed to develop the prediction model. The performance of the models was evaluated using Confusion Matrix and F1-score. Findings The findings reveal that when using the original imbalanced data, the prediction performance for the minority class (default) was poor. However, after applying imbalance handling techniques such as SMOTE, the predictive performance for the minority class improved significantly. In particular, the Random Forest model, when combined with the SMOTE-Tomek Links technique, showed the highest predictive performance, making it the most suitable model for default prediction. These results suggest that effectively addressing data imbalance is crucial in developing accurate default prediction models, and the appropriate use of sampling techniques can greatly enhance predictive performance.

Boosting the Performance of the Predictive Model on the Imbalanced Dataset Using SVM Based Bagging and Out-of-Distribution Detection (SVM 기반 Bagging과 OoD 탐색을 활용한 제조공정의 불균형 Dataset에 대한 예측모델의 성능향상)

  • Kim, Jong Hoon;Oh, Hayoung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.11
    • /
    • pp.455-464
    • /
    • 2022
  • There are two unique characteristics of the datasets from a manufacturing process. They are the severe class imbalance and lots of Out-of-Distribution samples. Some good strategies such as the oversampling over the minority class, and the down-sampling over the majority class, are well known to handle the class imbalance. In addition, SMOTE has been chosen to address the issue recently. But, Out-of-Distribution samples have been studied just with neural networks. It seems to be hardly shown that Out-of-Distribution detection is applied to the predictive model using conventional machine learning algorithms such as SVM, Random Forest and KNN. It is known that conventional machine learning algorithms are much better than neural networks in prediction performance, because neural networks are vulnerable to over-fitting and requires much bigger dataset than conventional machine learning algorithms does. So, we suggests a new approach to utilize Out-of-Distribution detection based on SVM algorithm. In addition to that, bagging technique will be adopted to improve the precision of the model.

Response Modeling for the Marketing Promotion with Weighted Case Based Reasoning Under Imbalanced Data Distribution (불균형 데이터 환경에서 변수가중치를 적용한 사례기반추론 기반의 고객반응 예측)

  • Kim, Eunmi;Hong, Taeho
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.29-45
    • /
    • 2015
  • Response modeling is a well-known research issue for those who have tried to get more superior performance in the capability of predicting the customers' response for the marketing promotion. The response model for customers would reduce the marketing cost by identifying prospective customers from very large customer database and predicting the purchasing intention of the selected customers while the promotion which is derived from an undifferentiated marketing strategy results in unnecessary cost. In addition, the big data environment has accelerated developing the response model with data mining techniques such as CBR, neural networks and support vector machines. And CBR is one of the most major tools in business because it is known as simple and robust to apply to the response model. However, CBR is an attractive data mining technique for data mining applications in business even though it hasn't shown high performance compared to other machine learning techniques. Thus many studies have tried to improve CBR and utilized in business data mining with the enhanced algorithms or the support of other techniques such as genetic algorithm, decision tree and AHP (Analytic Process Hierarchy). Ahn and Kim(2008) utilized logit, neural networks, CBR to predict that which customers would purchase the items promoted by marketing department and tried to optimized the number of k for k-nearest neighbor with genetic algorithm for the purpose of improving the performance of the integrated model. Hong and Park(2009) noted that the integrated approach with CBR for logit, neural networks, and Support Vector Machine (SVM) showed more improved prediction ability for response of customers to marketing promotion than each data mining models such as logit, neural networks, and SVM. This paper presented an approach to predict customers' response of marketing promotion with Case Based Reasoning. The proposed model was developed by applying different weights to each feature. We deployed logit model with a database including the promotion and the purchasing data of bath soap. After that, the coefficients were used to give different weights of CBR. We analyzed the performance of proposed weighted CBR based model compared to neural networks and pure CBR based model empirically and found that the proposed weighted CBR based model showed more superior performance than pure CBR model. Imbalanced data is a common problem to build data mining model to classify a class with real data such as bankruptcy prediction, intrusion detection, fraud detection, churn management, and response modeling. Imbalanced data means that the number of instance in one class is remarkably small or large compared to the number of instance in other classes. The classification model such as response modeling has a lot of trouble to recognize the pattern from data through learning because the model tends to ignore a small number of classes while classifying a large number of classes correctly. To resolve the problem caused from imbalanced data distribution, sampling method is one of the most representative approach. The sampling method could be categorized to under sampling and over sampling. However, CBR is not sensitive to data distribution because it doesn't learn from data unlike machine learning algorithm. In this study, we investigated the robustness of our proposed model while changing the ratio of response customers and nonresponse customers to the promotion program because the response customers for the suggested promotion is always a small part of nonresponse customers in the real world. We simulated the proposed model 100 times to validate the robustness with different ratio of response customers to response customers under the imbalanced data distribution. Finally, we found that our proposed CBR based model showed superior performance than compared models under the imbalanced data sets. Our study is expected to improve the performance of response model for the promotion program with CBR under imbalanced data distribution in the real world.

A Method of Bank Telemarketing Customer Prediction based on Hybrid Sampling and Stacked Deep Networks (혼성 표본 추출과 적층 딥 네트워크에 기반한 은행 텔레마케팅 고객 예측 방법)

  • Lee, Hyunjin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.3
    • /
    • pp.197-206
    • /
    • 2019
  • Telemarketing has been used in finance due to the reduction of offline channels. In order to select telemarketing target customers, various machine learning techniques have emerged to maximize the effect of minimum cost. However, there are problems that the class imbalance, which the number of marketing success customers is smaller than the number of failed customers, and the recall rate is lower than accuracy. In this paper, we propose a method that solve the imbalanced class problem and increase the recall rate to improve the efficiency. The hybrid sampling method is applied to balance the data in the class, and the stacked deep network is applied to improve the recall and precision as well as the accuracy. The proposed method is applied to actual bank telemarketing data. As a result of the comparison experiment, the accuracy, the recall, and the precision is improved higher than that of the conventional methods.

Triplet Class-Wise Difficulty-Based Loss for Long Tail Classification

  • Yaw Darkwah Jnr.;Dae-Ki Kang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.66-72
    • /
    • 2023
  • Little attention appears to have been paid to the relevance of learning a good representation function in solving long tail tasks. Therefore, we propose a new loss function to ensure a good representation is learnt while learning to classify. We call this loss function Triplet Class-Wise Difficulty-Based (TriCDB-CE) Loss. It is a combination of the Triplet Loss and Class-wise Difficulty-Based Cross-Entropy (CDB-CE) Loss. We prove its effectiveness empirically by performing experiments on three benchmark datasets. We find improvement in accuracy after comparing with some baseline methods. For instance, in the CIFAR-10-LT, 7 percentage points (pp) increase relative to the CDB-CE Loss was recorded. There is more room for improvement on Places-LT.

Enhancing machine learning-based anomaly detection for TBM penetration rate with imbalanced data manipulation (불균형 데이터 처리를 통한 머신러닝 기반 TBM 굴진율 이상탐지 개선)

  • Kibeom Kwon;Byeonghyun Hwang;Hyeontae Park;Ju-Young Oh;Hangseok Choi
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.5
    • /
    • pp.519-532
    • /
    • 2024
  • Anomaly detection for the penetration rate of tunnel boring machines (TBMs) is crucial for effective risk management in TBM tunnel projects. However, previous machine learning models for predicting the penetration rate have struggled with imbalanced data between normal and abnormal penetration rates. This study aims to enhance the performance of machine learning-based anomaly detection for the penetration rate by utilizing a data augmentation technique to address this data imbalance. Initially, six input features were selected through correlation analysis. The lowest and highest 10% of the penetration rates were designated as abnormal classes, while the remaining penetration rates were categorized as a normal class. Two prediction models were developed, each trained on an original training set and an oversampled training set constructed using SMOTE (synthetic minority oversampling technique): an XGB (extreme gradient boosting) model and an XGB-SMOTE model. The prediction results showed that the XGB model performed poorly for the abnormal classes, despite performing well for the normal class. In contrast, the XGB-SMOTE model consistently exhibited superior performance across all classes. These findings can be attributed to the data augmentation for the abnormal penetration rates using SMOTE, which enhances the model's ability to learn patterns between geological and operational factors that contribute to abnormal penetration rates. Consequently, this study demonstrates the effectiveness of employing data augmentation to manage imbalanced data in anomaly detection for TBM penetration rates.

Extraction Method of Significant Clinical Tests Based on Data Discretization and Rough Set Approximation Techniques: Application to Differential Diagnosis of Cholecystitis and Cholelithiasis Diseases (데이터 이산화와 러프 근사화 기술에 기반한 중요 임상검사항목의 추출방법: 담낭 및 담석증 질환의 감별진단에의 응용)

  • Son, Chang-Sik;Kim, Min-Soo;Seo, Suk-Tae;Cho, Yun-Kyeong;Kim, Yoon-Nyun
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.2
    • /
    • pp.134-143
    • /
    • 2011
  • The selection of meaningful clinical tests and its reference values from a high-dimensional clinical data with imbalanced class distribution, one class is represented by a large number of examples while the other is represented by only a few, is an important issue for differential diagnosis between similar diseases, but difficult. For this purpose, this study introduces methods based on the concepts of both discernibility matrix and function in rough set theory (RST) with two discretization approaches, equal width and frequency discretization. Here these discretization approaches are used to define the reference values for clinical tests, and the discernibility matrix and function are used to extract a subset of significant clinical tests from the translated nominal attribute values. To show its applicability in the differential diagnosis problem, we have applied it to extract the significant clinical tests and its reference values between normal (N = 351) and abnormal group (N = 101) with either cholecystitis or cholelithiasis disease. In addition, we investigated not only the selected significant clinical tests and the variations of its reference values, but also the average predictive accuracies on four evaluation criteria, i.e., accuracy, sensitivity, specificity, and geometric mean, during l0-fold cross validation. From the experimental results, we confirmed that two discretization approaches based rough set approximation methods with relative frequency give better results than those with absolute frequency, in the evaluation criteria (i.e., average geometric mean). Thus it shows that the prediction model using relative frequency can be used effectively in classification and prediction problems of the clinical data with imbalanced class distribution.

A Study of a Method for Maintaining Accuracy Uniformity When Using Long-tailed Dataset (불균형 데이터세트 학습에서 정확도 균일화를 위한 학습 방법에 관한 연구)

  • Geun-pyo Park;XinYu Piao;Jong-Kook Kim
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.585-587
    • /
    • 2023
  • Long-tailed datasets have an imbalanced distribution because they consist of a different number of data samples for each class. However, there are problems of the performance degradation in tail-classes and class-accuracy imbalance for all classes. To address these problems, this paper suggests a learning method for training of long-tailed dataset. The proposed method uses and combines two methods; one is a resampling method to generate a uniform mini-batch to prevent the performance degradation in tail-classes, and the other is a reweighting method to address the accuracy imbalance problem. The purpose of our proposed method is to train the learning models to have uniform accuracy for each class in a long-tailed dataset.

A Study on Visual Emotion Classification using Balanced Data Augmentation (균형 잡힌 데이터 증강 기반 영상 감정 분류에 관한 연구)

  • Jeong, Chi Yoon;Kim, Mooseop
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.7
    • /
    • pp.880-889
    • /
    • 2021
  • In everyday life, recognizing people's emotions from their frames is essential and is a popular research domain in the area of computer vision. Visual emotion has a severe class imbalance in which most of the data are distributed in specific categories. The existing methods do not consider class imbalance and used accuracy as the performance metric, which is not suitable for evaluating the performance of the imbalanced dataset. Therefore, we proposed a method for recognizing visual emotion using balanced data augmentation to address the class imbalance. The proposed method generates a balanced dataset by adopting the random over-sampling and image transformation methods. Also, the proposed method uses the Focal loss as a loss function, which can mitigate the class imbalance by down weighting the well-classified samples. EfficientNet, which is the state-of-the-art method for image classification is used to recognize visual emotion. We compare the performance of the proposed method with that of conventional methods by using a public dataset. The experimental results show that the proposed method increases the F1 score by 40% compared with the method without data augmentation, mitigating class imbalance without loss of classification accuracy.

An Analytical Study on Automatic Classification of Domestic Journal articles Using Random Forest (랜덤포레스트를 이용한 국내 학술지 논문의 자동분류에 관한 연구)

  • Kim, Pan Jun
    • Journal of the Korean Society for information Management
    • /
    • v.36 no.2
    • /
    • pp.57-77
    • /
    • 2019
  • Random Forest (RF), a representative ensemble technique, was applied to automatic classification of journal articles in the field of library and information science. Especially, I performed various experiments on the main factors such as tree number, feature selection, and learning set size in terms of classification performance that automatically assigns class labels to domestic journals. Through this, I explored ways to optimize the performance of random forests (RF) for imbalanced datasets in real environments. Consequently, for the automatic classification of domestic journal articles, Random Forest (RF) can be expected to have the best classification performance when using tree number interval 100~1000(C), small feature set (10%) based on chi-square statistic (CHI), and most learning sets (9-10 years).