• Title/Summary/Keyword: Imbalanced class

Search Result 75, Processing Time 0.025 seconds

Study on failure mode prediction of reinforced concrete columns based on class imbalanced dataset

  • Mingyi Cai;Guangjun Sun;Bo Chen
    • Earthquakes and Structures
    • /
    • v.27 no.3
    • /
    • pp.177-189
    • /
    • 2024
  • Accurately predicting the failure modes of reinforced concrete (RC) columns is essential for structural design and assessment. In this study, the challenges of imbalanced datasets and complex feature selection in machine learning (ML) methods were addressed through an optimized ML approach. By combining feature selection and oversampling techniques, the prediction of seismic failure modes in rectangular RC columns was improved. Two feature selection methods were used to identify six input parameters. To tackle class imbalance, the Borderline-SMOTE1 algorithm was employed, enhancing the learning capabilities of the models for minority classes. Eight ML algorithms were trained and fine-tuned using k-fold shuffle split cross-validation and grid search. The results showed that the artificial neural network model achieved 96.77% accuracy, while k-nearest neighbor, support vector machine, and random forest models each achieved 95.16% accuracy. The balanced dataset led to significant improvements, particularly in predicting the flexure-shear failure mode, with accuracy increasing by 6%, recall by 8%, and F1 scores by 7%. The use of the Borderline-SMOTE1 algorithm significantly improved the recognition of samples at failure mode boundaries, enhancing the classification performance of models like k-nearest neighbor and decision tree, which are highly sensitive to data distribution and decision boundaries. This method effectively addressed class imbalance and selected relevant features without requiring complex simulations like traditional methods, proving applicable for discerning failure modes in various concrete members under seismic action.

Re-SSS: Rebalancing Imbalanced Data Using Safe Sample Screening

  • Shi, Hongbo;Chen, Xin;Guo, Min
    • Journal of Information Processing Systems
    • /
    • v.17 no.1
    • /
    • pp.89-106
    • /
    • 2021
  • Different samples can have different effects on learning support vector machine (SVM) classifiers. To rebalance an imbalanced dataset, it is reasonable to reduce non-informative samples and add informative samples for learning classifiers. Safe sample screening can identify a part of non-informative samples and retain informative samples. This study developed a resampling algorithm for Rebalancing imbalanced data using Safe Sample Screening (Re-SSS), which is composed of selecting Informative Samples (Re-SSS-IS) and rebalancing via a Weighted SMOTE (Re-SSS-WSMOTE). The Re-SSS-IS selects informative samples from the majority class, and determines a suitable regularization parameter for SVM, while the Re-SSS-WSMOTE generates informative minority samples. Both Re-SSS-IS and Re-SSS-WSMOTE are based on safe sampling screening. The experimental results show that Re-SSS can effectively improve the classification performance of imbalanced classification problems.

Severity-based Software Quality Prediction using Class Imbalanced Data

  • Hong, Euy-Seok;Park, Mi-Kyeong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.4
    • /
    • pp.73-80
    • /
    • 2016
  • Most fault prediction models have class imbalance problems because training data usually contains much more non-fault class modules than fault class ones. This imbalanced distribution makes it difficult for the models to learn the minor class module data. Data imbalance is much higher when severity-based fault prediction is used. This is because high severity fault modules is a smaller subset of the fault modules. In this paper, we propose severity-based models to solve these problems using the three sampling methods, Resample, SpreadSubSample and SMOTE. Empirical results show that Resample method has typical over-fit problems, and SpreadSubSample method cannot enhance the prediction performance of the models. Unlike two methods, SMOTE method shows good performance in terms of AUC and FNR values. Especially J48 decision tree model using SMOTE outperforms other prediction models.

Classification of Imbalanced Data Using Multilayer Perceptrons (다층퍼셉트론에 의한 불균현 데이터의 학습 방법)

  • Oh, Sang-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.7
    • /
    • pp.141-148
    • /
    • 2009
  • Recently there have been many research efforts focused on imbalanced data classification problems, since they are pervasive but hard to be solved. Approaches to the imbalanced data problems can be categorized into data level approach using re-sampling, algorithmic level one using cost functions, and ensembles of basic classifiers for performance improvement. As an algorithmic level approach, this paper proposes to use multilayer perceptrons with higher-order error functions. The error functions intensify the training of minority class patterns and weaken the training of majority class patterns. Mammography and thyroid data-sets are used to verify the superiority of the proposed method over the other methods such as mean-squared error, two-phase, and threshold moving methods.

Effects of Preprocessing on Text Classification in Balanced and Imbalanced Datasets

  • Mehmet F. Karaca
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.591-609
    • /
    • 2024
  • In this study, preprocessings with all combinations were examined in terms of the effects on decreasing word number, shortening the duration of the process and the classification success in balanced and imbalanced datasets which were unbalanced in different ratios. The decreases in the word number and the processing time provided by preprocessings were interrelated. It was seen that more successful classifications were made with Turkish datasets and English datasets were affected more from the situation of whether the dataset is balanced or not. It was found out that the incorrect classifications, which are in the classes having few documents in highly imbalanced datasets, were made by assigning to the class close to the related class in terms of topic in Turkish datasets and to the class which have many documents in English datasets. In terms of average scores, the highest classification was obtained in Turkish datasets as follows: with not applying lowercase, applying stemming and removing stop words, and in English datasets as follows: with applying lowercase and stemming, removing stop words. Applying stemming was the most important preprocessing method which increases the success in Turkish datasets, whereas removing stop words in English datasets. The maximum scores revealed that feature selection, feature size and classifier are more effective than preprocessing in classification success. It was concluded that preprocessing is necessary for text classification because it shortens the processing time and can achieve high classification success, a preprocessing method does not have the same effect in all languages, and different preprocessing methods are more successful for different languages.

Weighted L1-Norm Support Vector Machine for the Classification of Highly Imbalanced Data (불균형 자료의 분류분석을 위한 가중 L1-norm SVM)

  • Kim, Eunkyung;Jhun, Myoungshic;Bang, Sungwan
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.1
    • /
    • pp.9-21
    • /
    • 2015
  • The support vector machine has been successfully applied to various classification areas due to its flexibility and a high level of classification accuracy. However, when analyzing imbalanced data with uneven class sizes, the classification accuracy of SVM may drop significantly in predicting minority class because the SVM classifiers are undesirably biased toward the majority class. The weighted $L_2$-norm SVM was developed for the analysis of imbalanced data; however, it cannot identify irrelevant input variables due to the characteristics of the ridge penalty. Therefore, we propose the weighted $L_1$-norm SVM, which uses lasso penalty to select important input variables and weights to differentiate the misclassification of data points between classes. We demonstrate the satisfactory performance of the proposed method through simulation studies and a real data analysis.

SUPPORT VECTOR MACHINE USING K-MEANS CLUSTERING

  • Lee, S.J.;Park, C.;Jhun, M.;Koo, J.Y.
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.1
    • /
    • pp.175-182
    • /
    • 2007
  • The support vector machine has been successful in many applications because of its flexibility and high accuracy. However, when a training data set is large or imbalanced, the support vector machine may suffer from significant computational problem or loss of accuracy in predicting minority classes. We propose a modified version of the support vector machine using the K-means clustering that exploits the information in class labels during the clustering process. For large data sets, our method can save the computation time by reducing the number of data points without significant loss of accuracy. Moreover, our method can deal with imbalanced data sets effectively by alleviating the influence of dominant class.

A Novel Feature Selection Method in the Categorization of Imbalanced Textual Data

  • Pouramini, Jafar;Minaei-Bidgoli, Behrouze;Esmaeili, Mahdi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3725-3748
    • /
    • 2018
  • Text data distribution is often imbalanced. Imbalanced data is one of the challenges in text classification, as it leads to the loss of performance of classifiers. Many studies have been conducted so far in this regard. The proposed solutions are divided into several general categories, include sampling-based and algorithm-based methods. In recent studies, feature selection has also been considered as one of the solutions for the imbalance problem. In this paper, a novel one-sided feature selection known as probabilistic feature selection (PFS) was presented for imbalanced text classification. The PFS is a probabilistic method that is calculated using feature distribution. Compared to the similar methods, the PFS has more parameters. In order to evaluate the performance of the proposed method, the feature selection methods including Gini, MI, FAST and DFS were implemented. To assess the proposed method, the decision tree classifications such as C4.5 and Naive Bayes were used. The results of tests on Reuters-21875 and WebKB figures per F-measure suggested that the proposed feature selection has significantly improved the performance of the classifiers.

Default Prediction for Real Estate Companies with Imbalanced Dataset

  • Dong, Yuan-Xiang;Xiao, Zhi;Xiao, Xue
    • Journal of Information Processing Systems
    • /
    • v.10 no.2
    • /
    • pp.314-333
    • /
    • 2014
  • When analyzing default predictions in real estate companies, the number of non-defaulted cases always greatly exceeds the defaulted ones, which creates the two-class imbalance problem. This lowers the ability of prediction models to distinguish the default sample. In order to avoid this sample selection bias and to improve the prediction model, this paper applies a minority sample generation approach to create new minority samples. The logistic regression, support vector machine (SVM) classification, and neural network (NN) classification use an imbalanced dataset. They were used as benchmarks with a single prediction model that used a balanced dataset corrected by the minority samples generation approach. Instead of using prediction-oriented tests and the overall accuracy, the true positive rate (TPR), the true negative rate (TNR), G-mean, and F-score are used to measure the performance of default prediction models for imbalanced dataset. In this paper, we describe an empirical experiment that used a sampling of 14 default and 315 non-default listed real estate companies in China and report that most results using single prediction models with a balanced dataset generated better results than an imbalanced dataset.

Machine Learning Based Intrusion Detection Systems for Class Imbalanced Datasets (클래스 불균형 데이터에 적합한 기계 학습 기반 침입 탐지 시스템)

  • Cheong, Yun-Gyung;Park, Kinam;Kim, Hyunjoo;Kim, Jonghyun;Hyun, Sangwon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.6
    • /
    • pp.1385-1395
    • /
    • 2017
  • This paper aims to develop an IDS (Intrusion Detection System) that takes into account class imbalanced datasets. For this, we first built a set of training data sets from the Kyoto 2006+ dataset in which the amounts of normal data and abnormal (intrusion) data are not balanced. Then, we have run a number of tests to evaluate the effectiveness of machine learning techniques for detecting intrusions. Our evaluation results demonstrated that the Random Forest algorithm achieved the best performances.