In recent years, imbalanced data is one of the most important and frequent issue for quality control in industrial field. As an example, defect rate has been drastically reduced thanks to highly developed technology and quality management, so that only few defective data can be obtained from production process. Therefore, quality classification should be performed under the condition that one class (defective dataset) is even smaller than the other class (good dataset). However, traditional multi-class classification methods are not appropriate to deal with such an imbalanced dataset, since they classify data from the difference between one class and the others that can hardly be found in imbalanced datasets. Thus, one-class classification that thoroughly learns patterns of target class is more suitable for imbalanced dataset since it only focuses on data in a target class. So far, several one-class classification methods such as one-class support vector machine, neural network and decision tree there have been suggested. One-class support vector machine and neural network can guarantee good classification rate, and decision tree can provide a set of rules that can be clearly interpreted. However, the classifiers obtained from the former two methods consist of complex mathematical functions and cannot be easily understood by users. In case of decision tree, the criterion for rule generation is ambiguous. Therefore, as an alternative, a new one-class classifier using hyper-rectangles was proposed, which performs precise classification compared to other methods and generates rules clearly understood by users as well. In this paper, we suggest an approach for improving the limitations of those previous one-class classification algorithms. Specifically, the suggested approach produces more improved one-class classifier using hyper-rectangles generated by using Gaussian function. The performance of the suggested algorithm is verified by a numerical experiment, which uses several datasets in UCI machine learning repository.
Yield prediction is important to manage semiconductor quality. Many researches with machine learning algorithms such as SVM (support vector machine) are conducted to predict yield precisely. However, yield prediction using SVM is hard because extremely imbalanced and big data are generated by final test procedure in semiconductor manufacturing process. Using SVM algorithm with imbalanced data sometimes cause unnecessary support vectors from major class because of unselected support vectors from minor class. So, decision boundary at target class can be overwhelmed by effect of observations in major class. For this reason, we propose a under-sampling method with minor class based SVM (MCSVM) which overcomes the limitations of ordinary SVM algorithm. MCSVM constructs the model that fixes some of data from minor class as support vectors, and they can be good samples representing the nature of target class. Several experimental studies with using the data sets from UCI and real manufacturing process represent that our proposed method performs better than existing sampling methods.
It has been an interesting challenge to find a good classifier for imbalanced data, since it is pervasive but a difficult problem to solve. However, classifiers developed with the assumption of well-balanced class distributions show poor classification performance for the imbalanced data. Among many approaches to the imbalanced data problems, the algorithmic level approach is attractive because it can be applied to the other approaches such as data level or ensemble approaches. Especially, the error back-propagation algorithm using the target node method, which can change the amount of weight-updating with regards to the target node of each class, attains good performances in the imbalanced data problems. In this paper, we analyze the relationship between two optimal outputs of neural network classifier trained with the target node method. Also, the optimal relationship is compared with those of the other error function methods such as mean-squared error and the n-th order extension of cross-entropy error. The analyses are verified through simulations on a thyroid data set.
Imbalanced data sets are difficult to be classified since most classifiers are developed based on the assumption that class distributions are well-balanced. In order to improve the error back-propagation algorithm for the classification of imbalanced data sets, a new error function is proposed. The error function controls weight-updating with regards to the classes in which the training samples are. This has the effect that samples in the minority class have a greater chance to be classified but samples in the majority class have a less chance to be classified. The proposed method is compared with the two-phase, threshold-moving, and target node methods through simulations in a mammography data set and the proposed method attains the best results.
최근 들어 데이터 마이닝의 분류문제에 있어 목표변수의 불균형 문제가 많은 관심을 받고 있다. 이러한 문제를 해결하기 위해, 이전 연구들은 원 자료에 대하여 데이터 전처리 과정을 실시했는데, 전처리 과정에는 목표변수의 다수계급을 소수계급의 비율에 맞게 조정하는 과소표집법, 소수계급을 복원추출하여 다수계급의 비율에 맞게 조정하는 과대표집법, 소수계급에 K-최근접 이웃 방법 등을 활용하여 과대표집법을 적용 후 다수계급에는 과소표집법을 적용한 하이브리드 기법 등이 있다. 또한 앙상블 기법도 이러한 불균형 데이터의 분류 성능을 높일 수 있다고 알려져 있어, 본 논문에서는 데이터의 전처리 과정과 앙상블 기법을 함께 고려한 여러 모형들을 사용하여, 불균형 자료에 대한 이들모형의 분류성능을 비교평가한다.
International Journal of Internet, Broadcasting and Communication
/
제11권4호
/
pp.37-42
/
2019
In this paper, we explore the details of three classic data augmentation methods and two generative model based oversampling methods. The three classic data augmentation methods are random sampling (RANDOM), Synthetic Minority Over-sampling Technique (SMOTE), and Adaptive Synthetic Sampling (ADASYN). The two generative model based oversampling methods are Conditional Generative Adversarial Network (CGAN) and Wasserstein Generative Adversarial Network (WGAN). In imbalanced data, the whole instances are divided into majority class and minority class, where majority class occupies most of the instances in the training set and minority class only includes a few instances. Generative models have their own advantages when they are used to generate more plausible samples referring to the distribution of the minority class. We also adopt CGAN to compare the data augmentation performance with other methods. The experimental results show that WGAN-based oversampling technique is more stable than other approaches (RANDOM, SMOTE, ADASYN and CGAN) even with the very limited training datasets. However, when the imbalanced ratio is too small, generative model based approaches cannot achieve satisfying performance than the conventional data augmentation techniques. These results suggest us one of future research directions.
두 계급의 분류문제에서 두 계급의 관측 개체수가 심하게 불균형을 이룬 자료를 분석할 때, 흔히 인위적으로 두 계급의 크기를 비슷하게 해준 다음 분석한다. 본 연구에서는 이런 훈련표본 구성방법의 타당성에 대해 알아보았다. 또한 훈련표본의 구성방법이 부스팅에 미치는 효과에 대해서도 알아보았다. 12개의 실제 자료에 대한 실험 결과 나무모형으로 부스팅 기법을 적용할 때는 훈련표본을 그대로 둔 채 분석하는 것이 좋다는 결론을 얻었다.
본 논문에서는 클래스 불균형 학습을 위한 이차 최적화 문제의 해를 구하는 개선된 SMO 학습 알고리즘을 제안한다. 클래스에 서로 다른 정규화 값이 부여되는 지지벡터기계의 최적화 문제의 구현에 SMO 알고리즘이 적합하며, 제안된 알고리즘은 서로 다른 클래스에서 선택된 두 라그랑지 변수의 현재 해를 구하는 학습 단계를 반복한다. 제안된 학습 알고리즘은 UCI 벤치마킹 문제에서 테스트되어 클래스 불균형 분포를 반영하는 g-mean 평가를 이용한 일반화 성능이 SMO 알고리즘과 비교되었다. 실험 결과에서 제안된 알고리즘은 SMO에 비해 적은 클래스 데이터의 예측율을 높이고 학습시간을 단축시킬 수 있다.
분류 문제는 주어진 입력 데이터에 대해 해당 데이터의 클래스를 예측하는 문제로, 자주 쓰이는 방법 중의 하나는 주어진 데이터셋을 사용하여 기계학습 알고리즘을 학습시키는 것이다. 이런 경우 분류하고자 하는 클래스에 따른 데이터의 분포가 균일한 데이터셋이 이상적이지만, 불균형한 분포를 가지고 경우 제대로 분류하지 못하는 문제가 발생한다. 이러한 문제를 해결하기 위해 본 논문에서는 Conditional Generative Adversarial Networks(CGAN)을 활용하여 데이터 수의 균형을 맞추는 오버샘플링 기법을 제안한다. CGAN은 Generative Adversarial Networks(GAN)에서 파생된 생성 모델로, 데이터의 특징을 학습하여 실제 데이터와 유사한 데이터를 생성할 수 있다. 따라서 CGAN이 데이터 수가 적은 클래스의 데이터를 학습하고 생성함으로써 불균형한 클래스 비율을 맞추어 줄 수 있으며, 그에 따라 분류 성능을 높일 수 있다. 실제 수집된 데이터를 이용한 실험을 통해 CGAN을 활용한 오버샘플링 기법이 효과가 있음을 보이고 기존 오버샘플링 기법들과 비교하여 기존 기법들보다 우수함을 입증하였다.
일반적으로 support vector machine (SVM)은 높은 수준의 분류 정확도를 제공함으로써 다양한 분야의 분류분석에서 널리 사용되고 있다. 그러나 SVM은 최적화 계산식이 이차계획법(quadratic programming)으로 공식화되어 많은 계산 비용이 필요하므로 대용량 자료의 분류분석에는 그 사용이 제한된다. 또한 불균형 자료(imbalanced data)의 분류분석에서는 다수집단에 편향된 분류함수를 추정함으로써 대부분의 자료를 다수집단으로 분류하여 소수집단의 분류 정확도를 현저히 감소시키게 된다. 이러한 문제점들을 해결하기 위하여 본 논문에서는 다수집단을 분할(divide)하고, 소수집단을 과대추출(oversampling)하여 여러 분류함수들을 추정하고 이들을 통합(conquer)하는 DOC-SVM 분류기법을 제안한다. 제안한 DOC-SVM은 분할정복 알고리즘을 다수집단에 적용하여 SVM의 계산 효율을 향상시키고, 과대추출 알고리즘을 소수집단에 적용하여 SVM 분류함수의 편향을 줄이게 된다. 본 논문에서는 모의실험과 실제자료 분석을 통해 제안한 DOC-SVM의 효율적인 성능과 활용 가능성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.