• Title/Summary/Keyword: Imaging spectrometer

Search Result 143, Processing Time 0.026 seconds

Sensitivity Experiment of Surface Reflectance to Error-inducing Variables Based on the GEMS Satellite Observations (GEMS 위성관측에 기반한 지면반사도 산출 시에 오차 유발 변수에 대한 민감도 실험)

  • Shin, Hee-Woo;Yoo, Jung-Moon
    • Journal of the Korean earth science society
    • /
    • v.39 no.1
    • /
    • pp.53-66
    • /
    • 2018
  • The information of surface reflectance ($R_{sfc}$) is important for the heat balance and the environmental/climate monitoring. The $R_{sfc}$ sensitivity to error-induced variables for the Geostationary Environment Monitoring Spectrometer (GEMS) retrieval from geostationary-orbit satellite observations at 300-500 nm was investigated, utilizing polar-orbit satellite data of the MODerate resolution Imaging Spectroradiometer (MODIS) and Ozone Mapping Instrument (OMI), and the radiative transfer model (RTM) experiment. The variables in this study can be cloud, Rayleigh-scattering, aerosol, ozone and surface type. The cloud detection in high-resolution MODIS pixels ($1km{\times}1km$) was compared with that in GEMS-scale pixels ($8km{\times}7km$). The GEMS detection was consistent (~79%) with the MODIS result. However, the detection probability in partially-cloudy (${\leq}40%$) GEMS pixels decreased due to other effects (i.e., aerosol and surface type). The Rayleigh-scattering effect in RGB images was noticeable over ocean, based on the RTM calculation. The reflectance at top of atmosphere ($R_{toa}$) increased with aerosol amounts in case of $R_{sfc}$<0.2, but decreased in $R_{sfc}{\geq}0.2$. The $R_{sfc}$ errors due to the aerosol increased with wavelength in the UV, but were constant or slightly decreased in the visible. The ozone absorption was most sensitive at 328 nm in the UV region (328-354 nm). The $R_{sfc}$ error was +0.1 because of negative total ozone anomaly (-100 DU) under the condition of $R_{sfc}=0.15$. This study can be useful to estimate $R_{sfc}$ uncertainties in the GEMS retrieval.

An Analysis of MODIS Aerosol Optical Properties and Ground-based Mass Concentrations in Central Korea in 2009 (2009년 한국 중부 지역에서 MODIS 에어로졸 광학 성질과 질량 농도의 분석)

  • Kim, Hak-Sung;Kim, Ji-Min;Sohn, Jung-Joo
    • Journal of the Korean earth science society
    • /
    • v.33 no.3
    • /
    • pp.269-279
    • /
    • 2012
  • Satellite-retrieved data on Aerosol Optical Depth (AOD) and ${\AA}$ngstr$\ddot{o}$m exponent (AE) using a Moderate Resolution Imaging Spectrometer (MODIS) were used to analyze large-scale distributions of atmospheric aerosols in East Asia. AOD was relatively high in March ($0.44{\pm}0.25$) and low in September ($0.24{\pm}0.21$) in the East Asian region in 2009. Sandstorms originating from the deserts and dry areas in Northern China and Mongolia were transported on a massive scale during the springtime, thus contributing to the high AOD in East Asia. Although $PM_{10}$ with diameters ${\leq}10{\mu}m$ was the highest in February at Anmyon, Cheongwon and Ulleung, which is located leeward about half-way through the Korean Peninsula, AOD rose to a high in May. The growth of hygroscopic aerosols moving with increases in relative humidity prior to the Asian monsoon season contributed to a high AOD level in May. AE typically reaches its highest value ($1.30{\pm}0.37$) in August due to anthropogenic aerosols originating from industrial areas in Eastern China, while AOD stays low in summer due to the removal process caused by rainfall. The linear correlation coefficients of the MODIS AOD and ground-based mass concentrations of $PM_{10}$ at Anmyon, Cheongwon and Ulleung were 0.4-0.6. Four cases (six days) of mineral dustfall from sandstorms and six cases (twelve days) of anthropogenically polluted particles were observed in the central area of the Korean Peninsula in 2009. $PM_{10}$ mass concentrations increased at both Anmyon and Cheongwon in the cases of mineral dustfall and anthropogenically polluted particles. Cases of dustfall from sandstorms and anthropogenic polluted particles, with increasing $PM_{10}$ mass concentrations, exhibited higher AOD values in the Yellow Sea region.

Proposal of Joint Planning Working Group for Development of Korean Space Telescopes (한국형 우주망원경 개발을 위한 공동기획 Working Group 제안)

  • Han, Jeong-Yeol;Park, Woojin;Jun, Youra;Kim, Jihun;Kim, Yunjong;Choi, Seonghwan;Kim, Young-Soo;Baek, Ji-Hye;Moon, Bongkon;Jang, Biho;Kim, Jae-Woo;Hong, Sungwook E.;Jung, Youn Kil;Pak, Soojong;Chung, Soyoung
    • Journal of Space Technology and Applications
    • /
    • v.1 no.3
    • /
    • pp.283-301
    • /
    • 2021
  • In order to satisfy the intellectual curiosity of mankind to explore the unknown, National Aeronautics and Space Administration (NASA) in the United States and European Space Agency (ESA) in Europe are embarking on various R&D under the motto of the grand dream of pioneering space into a safe and sustainable environment. In the 2020s and 30s, it is expected that advanced giant observation equipment will be in operation, such as the development of a 10-meter-class telescope in space. In Korea, following the development of the 0.15 m Near-Infrared Imaging Spectrometer (NISS), Korea Astronomy and Space Science Institute (KASI) is also participating a 0.2 m Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer (SPHEREx) as an international cooperation partner in small exploration telescope. However, domestic experience in the development and operation of the space telescopes is still insufficient, and there is no plan with long-term prospects for constructing telescopes. In order to answer questions about the unknown world that mankind has not experienced using our own equipment, planning and preparation for the construction of a space telescope through close cooperation among industry-university-institute-government is urgently needed. In this paper, the necessity, background, development goals, and expected effects of the development of the Korean Space Telescope are summarized conceptually, and a working group (WG) is also proposed. In the WG activities, Korea shall take the lead in establishing the Korean-style space telescope development plan, and will start a valuable step to establish the national direction in the field of space astronomy and related technologies. We hope that the WG will be another milestone in Korea's space development.

Development of High Intensity Focused Ultrasound (HIFU) Mediated AuNP-liposomal Nanomedicine and Evaluation with PET Imaging

  • Ji Yoon Kim;Un Chul Shin;Ji Yong Park;Ran Ji Yoo;Soeku Bae;Tae Hyeon Choi;Kyuwan Kim;Young Chan Ann;Jin Sil Kim;Yu Jin Shin;Hokyu Lee;Yong Jin Lee;Kyo Chul Lee;Suhng Wook Kim;Yun-Sang Lee
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.9 no.1
    • /
    • pp.9-16
    • /
    • 2023
  • Liposomes as drug delivery system have proved useful carrier for various disease, including cancer. In addition, perfluorocarbon cored microbubbles are utilized in conjunction with high-intensity focused-ultrasound (HIFU) to enable simultaneous diagnosis and treatment. However, microbubbles generally exhibit lower drug loading efficiency, so the need for the development of a novel liposome-based drug delivery material that can efficiently load and deliver drugs to targeted areas via HIFU. This study aims to develop a liposome-based drug delivery material by introducing a substance that can burst liposomes using ultrasound energy and confirm the ability to target tumors using PET imaging. Liposomes (Lipo-DOX, Lipo-DOX-Au, Lipo-DOX-Au-RGD) were synthesized with gold nanoparticles using an avidin-biotin bond, and doxorubicin was mounted inside by pH gradient method. The size distribution was measured by DLS, and encapsulation efficiency of doxorubicin was analyzed by UV-vis spectrometer. The target specificity and cytotoxicity of liposomes were assessed in vitro by glioblastoma U87mg cells to HIFU treatment and analyzed using CCK-8 assay, and fluorescence microscopy at 6-hour intervals for up to 24 hours. For the in vivo study, U87mg model mouse were injected intravenously with 1.48 MBq of 64Cu-labeled Lipo-DOX-Au and Lipo-DOX-Au-RGD, and PET images were taken at 0, 2, 4, 8, and 24 hours. As a result, the size of liposomes was 108.3 ± 5.0 nm at Lipo-DOX-Au and 94.1 ± 12.2 nm at Lipo-DOX-Au-RGD, and it was observed that doxorubicin was mounted inside the liposome up to 52%. After 6 hours of HIFU treatment, the viability of U87mg cells treated with Lipo-DOX-Au decreased by around 20% compared to Lipo-DOX, and Lipo-DOX-Au-RGD had a higher uptake rate than Lipo-DOX. In vivo study using PET images, it was confirmed that 64Cu-Lipo-DOX-Au-RGD was taken up into the tumor immediately after injection and maintained for up to 4 hours. In this study, drugs released from liposomes-gold nanoparticles via ultrasound and RGD targeting were confirmed by non-invasive imaging. In cell-level experiments, HIFU treatment of gold nanoparticle-coupled liposomes significantly decreased tumor survival, while RGD-liposomes exhibited high tumor targeting and rapid release in vivo imaging. It is expected that the combination of these models with ultrasound is served as an effective drug delivery material with therapeutic outcomes.

Assessment of the Hydration Effect on In Vitro Human Skin by $^1H$ MRS at 14.1T System (고자장 14.1 T MRI/MRS 시스템에서 양성자 자기공명분광법을 이용한 생체 외 인체피부 보습효과에 대한 연구)

  • Choi Chi-Bong;Hong Sung-Tak;Woo Dong-Chul;Yoon Seong-Ik;Yoon Moon-Hyun;Cho Ji-Hyun;Lee Chul-Hyun;Cheong Chae-Joon;Park Sang-Yong;Oh Chil-Hwan;Choe Bo-Young
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.83-88
    • /
    • 2006
  • Purpose: We Investigated to achieve high resolution magnetic resonance (MR) Imaging and spectra of human skin in vitro with using a 14.1 T MRI/MRS system, and to evaluate the hydration effect of a moisturizer by measuring the skin's water concentration. Materials and Methods: We used the Brukrer 14.1 T MRI/MRS system with a vertical standard bore that was equipped with a DMX spectrometer gradient system (200 G/cm at a maximum 40 A), RF resonators (2, 5 and 10 mm) and Para Vision software. Spin echo and fast spin echo pulse sequences were employed for obtaining the high resolution MR images. The 3D-localized point resolved spectroscopy (PRESS) method was used to acquire the MR spectra. Results: The high resolution MR images and spectra of human skin in vitro were successfully obtained on a 14.IT system. The water concentration of human skin after applying a moisturizer was higher than that before applying a moisturizer. Conclusions: The present study demonstrated that the high-resolution MR images and spectra of human skin from a high field MRS instrument could be applicable to evaluating the hydration state of the stratum corneum.

  • PDF

IGRINS Design and Performance Report

  • Park, Chan;Jaffe, Daniel T.;Yuk, In-Soo;Chun, Moo-Young;Pak, Soojong;Kim, Kang-Min;Pavel, Michael;Lee, Hanshin;Oh, Heeyoung;Jeong, Ueejeong;Sim, Chae Kyung;Lee, Hye-In;Le, Huynh Anh Nguyen;Strubhar, Joseph;Gully-Santiago, Michael;Oh, Jae Sok;Cha, Sang-Mok;Moon, Bongkon;Park, Kwijong;Brooks, Cynthia;Ko, Kyeongyeon;Han, Jeong-Yeol;Nah, Jakyuong;Hill, Peter C.;Lee, Sungho;Barnes, Stuart;Yu, Young Sam;Kaplan, Kyle;Mace, Gregory;Kim, Hwihyun;Lee, Jae-Joon;Hwang, Narae;Kang, Wonseok;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.90-90
    • /
    • 2014
  • The Immersion Grating Infrared Spectrometer (IGRINS) is the first astronomical spectrograph that uses a silicon immersion grating as its dispersive element. IGRINS fully covers the H and K band atmospheric transmission windows in a single exposure. It is a compact high-resolution cross-dispersion spectrometer whose resolving power R is 40,000. An individual volume phase holographic grating serves as a secondary dispersing element for each of the H and K spectrograph arms. On the 2.7m Harlan J. Smith telescope at the McDonald Observatory, the slit size is $1^{{\prime}{\prime}}{\times}15^{{\prime}{\prime}}$. IGRINS has a plate scale of 0.27" pixel-1 on a $2048{\times}2048$ pixel Teledyne Scientific & Imaging HAWAII-2RG detector with a SIDECAR ASIC cryogenic controller. The instrument includes four subsystems; a calibration unit, an input relay optics module, a slit-viewing camera, and nearly identical H and K spectrograph modules. The use of a silicon immersion grating and a compact white pupil design allows the spectrograph collimated beam size to be 25mm, which permits the entire cryogenic system to be contained in a moderately sized ($0.96m{\times}0.6m{\times}0.38m$) rectangular Dewar. The fabrication and assembly of the optical and mechanical components were completed in 2013. From January to July of this year, we completed the system optical alignment and carried out commissioning observations on three runs to improve the efficiency of the instrument software and hardware. We describe the major design characteristics of the instrument including the system requirements and the technical strategy to meet them. We also present the instrumental performance test results derived from the commissioning runs at the McDonald Observatory.

  • PDF

Analysis of the MODIS-Based Vegetation Phenology Using the HANTS Algorithm (HANTS 알고리즘을 이용한 MODIS 영상기반의 식물계절 분석)

  • Choi, Chul-Hyun;Jung, Sung-Gwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.3
    • /
    • pp.20-38
    • /
    • 2014
  • Vegetation phenology is the most important indicator of ecosystem response to climate change. Therefore it is necessary to continuously monitor forest phenology. This paper analyzes the phenological characteristics of forests in South Korea using the MODIS vegetation index with error from clouds or other sources removed using the HANTS algorithm. After using the HANTS algorithm to reduce the noise of the satellite-based vegetation index data, we were able to confirm that phenological transition dates varied strongly with altitudinal gradients. The dates of the start of the growing season, end of the growing season and the length of the growing season were estimated to vary by +0.71day/100m, -1.33day/100m and -2.04day/100m in needleleaf forests, +1.50day/100m, -1.54day/100m and -3.04day/100m in broadleaf forests, +1.39day/100m, -2.04day/100m and -3.43day/100m in mixed forests. We found a linear pattern of variation in response to altitudinal gradients that was related to air temperature. We also found that broadleaf forests are more sensitive to temperature changes compared to needleleaf forests.

A Study on the Corelation between the Variation of Land Cover and Groundwater Recharge Using the Analysis of Landsat-8 OLI Data (Landsat-8 위성을 통한 토지피복 변화와 지하수 함양량 상관성 고찰)

  • Park, Seunghyuk;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.347-378
    • /
    • 2020
  • Based on monthly average groundwater recharge over a nearly 10 year period, results of fully integrated hydrologic modeling of SWAT-MODFLOW, land cover, land use, soil type and hydrologic response unit (HRU) was used to assess the dominant influencing factors of groundwater recharge spatial patterns in Jangseong district. As dominant factors, land cover was FRSE (forest-evergreen) and soil type was Samgag. Landsat-8 OLI imaging spectrometer data were acquired in the period 2003 to 2004 and seasonal bare soil lines (BSL) were estimated through NIR-RED plot. Extent of slope of BSL was from 1.092 to 1.343 and the intercept was from -0.004 to -0.015. To know correlation between spatial groundwater recharge and soil-vegetation indices (PVI, NDVI, NDTI, NDRI), this study employed frequency and regression analysis. On May, RED band increased up 3 to 4 times compared to other seasons and only one turning point appeared as recharge-index with upward parabola bell shape as results of existing research. Considering precipitation, if the various studies for relationship between groundwater recharge and soil-vegetation index just like NDVI are performed, it is possible to estimate groundwater recharge through analyzing remote sensing data.

Satellite (SCIAMACHY) Measurements of Tropospheric SO2 and NO2: Seasonal Trends of SO2 and NO2 Levels over Northeast Asia in 2006 (인공위성 (SCIAMACHY) 데이터를 이용한 대류권 SO2, NO2 측정: 2006년 동북아시아 지역의 계절적 SO2, NO2 변화 추세)

  • Lee, Chul-Kyu;Richter, Andreas;Burrows, John P.;Kim, Young-J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.2
    • /
    • pp.176-188
    • /
    • 2008
  • Anthropogenic emissions of nitrogen oxides and sulfur dioxide in Northeast Asia are of great concern because of their impact on air quality and atmospheric chemistry on regional and intercontinental scales. Satellite remote sensing based on DOAS (Differential Optical Absorption Spectroscopy) technique has been preferred to measure atmospheric trace species and to investigate their emission characteristics on regional and global scales. Absorption spectra obtained by the satellite-born instrument, SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Chartography) have been utilized to retrieve the information of $SO_2$ and $NO_2$ over Northeast Asia. $SO_2$ levels over Northeast Asia were in order of East China, Yellow Sea, South Sea and Korean Peninsula with mean vertical columns of $1.78({\pm}1.0){\times}10^{16}$, $1.11({\pm}0.67){\times}10^{16}$, $0.60({\pm}0.63){\times}10^{16}$, $0.71({\pm}0.65){\times}10^{16}\;molecules/cm^2$, respectively. $NO_2$ levels were in order of East China, Yellow Sea, Korean Peninsula, and South Sea with mean vertical columns of $1.2({\pm}0.56){\times}10^{16}$, $0.38({\pm}0.19){\times}10^{16}$, $0.48({\pm}0.28){\times}10^{16}$, $0.26({\pm}0.16){\times}10^{16}\;molecules/cm^2$, respectively. High levels of $SO_2$ and $NO_2$ were observed over East China, in particular in winter by the contribution of heating fuel combustion exhausts. The $SO_2$ and $NO_2$ levels over East China were the highest in January with 34% and 42% higher over the annual means. Low levels of $SO_2$ ranged over Korean peninsula, while $NO_2$ levels were relatively high, in particular in winter. The $SO_2$ and $NO_2$ levels over Yellow Sea were relatively higher compared to those over Korean peninsula and South Sea, which could be mainly attributed to their transport from East China.

A Study on the Anti-Reflection Coating Effects of Polymer Eyeglasses Lens (폴리머 안경렌즈의 반사방지 코팅효과 연구)

  • Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.216-221
    • /
    • 2017
  • Reducing optical reflection in the visible light range, in order to increase the share of transmitted light and avoid the formation of ghost images in imaging, is important for polymer lens applications. In this study, polymer lenses with refractive indices of n=1.56, 1.60, and 1.67 were fabricated by the injection-molding method with a polymer lens monomer, dibutyltin dichloride as the catalyst and an alkyl phosphoric ester as the release agent. To investigate their anti-reflection (AR) effects, various AR coating structures, viz. a multi-layer AR coating structure, tri-layer AR coating structure with a discrete approximation Gaussian gradient-index profile, and tri-layer AR coating structure with a quarter-wavelength approximation, were designed and coated on the polymer lens by an E-beam evaporation system. The optical properties of the polymer lenses were characterized by UV-visible spectrometry. The material properties of the thin films, refractive index and surface roughness, were analyzed by ellipsometry and AFM, respectively. The most effective AR coating structure of the polymer lens with low refractive index, n=1.56, was the both side coating of multi-layer AR coating structure. However, both side coating of the tri-layered discrete approximation Gaussian gradient-index profile AR coating structure gave comparable results to the both side coating of the multi-layer AR coating structure for the polymer lens with a high refractive index of n=1.67.