• Title/Summary/Keyword: Imaging Process

Search Result 1,040, Processing Time 0.023 seconds

A Study on the improvement a Resolution of the Ultrasound Imaging System (초음파 영상장치에서 해상도 향상에 관한 연구)

  • Lee, Hoo-Jeong;Kim, Young-Kil;Lee, Haing-Sei
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1235-1238
    • /
    • 1987
  • In this paper, a new focusing method, to be called the sampled delay focusing (SDF), is proposed. This method improves the lateral resolution in ultrasound imaging system. In SDF, the analog delay lines are no longer necessary because sampling sum process can replace the conventional delay sum process. Also, this method offers continuous dynamic focusing on the resolution pixel basis if the maximum delay time is less than the sampling interval. Second order sampling is adopted in order to extend the sampling interval.

  • PDF

Soundness Evaluation of 120W LED Lighting using Passive Infrared Thermal Imaging Method (수동적 적외선 열화상 기법을 적용한 120W급 LED조명등 건전성 평가)

  • Jung, Yoon-Soo;Gao, Jia-Chen;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.140-146
    • /
    • 2017
  • As energy conservation and environmental issues are emerging as a hot topic around the world, consumers are demanding high-efficiency, eco-friendly products. In this study, the author proposed 120W LED lighting system that replace metal halide lamp (MHL) which is currently used in the industry. Furthermore, it would be possible to provide a perfect opportunity for Korea to rise as a global leader in the LED lighting industry through soundness evaluation of the LED lighting system that is applied.

Array Testing of TFT-LCD Panel with Integrated Gate Driver Circuits

  • Lee, Jonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.68-72
    • /
    • 2020
  • A new method for array testing of TFT-CD panel with the integrated gate driver circuits is presented. As larger size/high resolution TFT-LCD with the peripheral driver circuits has emerged, one of the important problems for manufacturing is array testing on the panel. This paper describes the technology of detecting defective arrays and optimizing the array testing process. For the effective characterization of pixel array, the pixel storage capability is simulated and measured with voltage imaging system. This technology permits full functional testing during the manufacturing process, enabling fabrication of large TFT-LCD panels with the integrated driver circuits.

Femtosecond Photoelectron Imaging of N2 at 410 nm

  • Guo, Wei;Wei, Shanshan;Lu, Xingqiang;Wang, Li
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3693-3696
    • /
    • 2010
  • We experimentally measure the kinetic energy and angular distributions of photoelectrons of $N_2$ as a function of 410 nm femtosecond laser intensity by using velocity map imaging technique. The strong-field multiphoton ionization of molecules shares many of the characteristics with those of atoms. Electron kinetic energies are nearly independent of laser intensities. The independence suggests that the electron peaks in the photoelectron spectrum actually result from a two-step process, indicative of the occurrence of real population in the intermediate states. The relative amplitudes of electron peaks indicate that in the two-step process, nonresonant population transfer dominates for low intensities, while resonant population transfer dominates for higher intensities.

Effect of Radioisotope Position on Performance of Industrial SPECT (방사성동위원소 위치에 따른 산업용 SPECT 성능에 미치는 영향)

  • Moon, Jinho;Kim, Jongbum;Jung, Sung-Hee
    • Journal of Radiation Industry
    • /
    • v.6 no.3
    • /
    • pp.245-249
    • /
    • 2012
  • Demand of fluid flow visualization has increased in industrial processes, because medical imaging technology is highly developed. As a part of the industrial process imaging technology, industrial single photon emission computed tomography (SPECT) system was developed to measure the cross-sectional distribution of the process fluid. The SPECT consists of 36 NaI (Tl) detectors with the hexagonal configuration. Reconstructed images were acquired for various positions of radioactive source to estimate SPECT device performance. To evaluate the reliability of the experimental results, the Monte Carlo simulation results are compared with experimental results. In general, the experimental and simulation results were consistent. However, as the source position was getting far from the center of the reactor, the accuracy of reconstructed images was compromised. It seems to be due to the inconsistent spatial resolution of the collimators according to the source position.

One-pot Synthesis of Multifunctional Mn3O4/mesoporous Silica Core/shell Nanoparticles for Biomedical Applications

  • Lee, Dong Jun;Lee, Nohyun;Lee, Ji Eun
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.113-118
    • /
    • 2022
  • Multifunctional nanomaterials based on mesoporous silica nanoparticles (MSN) and metal oxide nanocrystals are among the most promising materials for theragnosis because of their ease of modification and high biocompatibility. However, the preparation of multifunctional nanoparticles requires time-consuming multistep processes. Herein, we report a simple one-pot synthesis of multifunctional Mn3O4/mesoporous silica core/shell nanoparticles (Mn3O4@mSiO2) involving the temporal separation of core formation and shell growth. This simple procedure greatly reduces the time and effort required to prepare multifunctional nanoparticles. Despite the simplicity of the process, the properties of nanoparticles are not markedly different from those of core/shell nanoparticles synthesized by a previously reported multistep process. The Mn3O4@mSiO2 nanoparticles are biocompatible and have potential for use in optical imaging and magnetic resonance imaging.

Fusion of Gamma and Realistic Imaging (감마영상과 실사영상의 Fusion)

  • Kim, Yun-Cheol;Yu, Yeon-Uk;Seo, Young-Deok;Moon, Jong-Woon;Kim, Yeong-Seok;Won, Woo-Jae;Kim, Seok-Ki
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.78-82
    • /
    • 2010
  • Purpose: Recently, South Korea has seen a rapidly increased incidence of both breast and thyroid cancers. As a result, the I-131 scan and lymphoscintigraphy have been performed more frequently. Although this type of diagnostic imaging is prominent in that visualizes pathological conditions, which is similar to previous nuclear diagnostic imaging techniques, there is not much anatomical information obtained. Accordingly, it has been used in different ways to help find anatomical locations by transmission scan, however the results were unsatisfactory. Therefore, this study aims to realize an imaging technique which shows more anatomical information through the fusion of gamma and realistic imaging. Materials and Methods: We analyzed the data from patients who were examined by the lymphoscintigraphy and I-131 additional scan by Symbia Gamma camera (SIEMENS) in the nuclear medicine department of the National Cancer Center from April to July of 2009. First, we scanned the same location in patients by using a miniature camera (R-2000) in hyVISION. Afterwards, we scanned by gamma camera. The data we obtained was evaluated based on the scanning that measures an agreement of gamma and realistic imaging by the Gamma Ray Tool fusion program. Results: The amount of radiation technicians and patients were exposed was generated during the production process of flood source and applied transmission scan. During this time, the radiation exposure dose of technicians was an average of 14.1743 ${\mu}Sv$, while the radiation exposure dose of patients averaged 0.9037 ${\mu}Sv$. We also confirmed this to matching gamma and realistic markers in fusion imaging. Conclusion: Therefore, we found that we could provide imaging with more anatomical information to clinical doctors by fusion of system of gamma and realistic imaging. This has allowed us to perform an easier method in which to reduce the work process. In addition, we found that the radiation exposure can be reduced from the flood source. Eventually, we hope that this will be applicable in other nuclear medicine studies. Therefore, in order to respect the privacy of patients, this procedure will be performed only after the patient has agreed to the procedure after being given a detailed explanation about the process itself and its advantages.

  • PDF

A phase synthesis time reversal impact imaging method for on-line composite structure monitoring

  • Qiu, Lei;Yuan, Shenfang
    • Smart Structures and Systems
    • /
    • v.8 no.3
    • /
    • pp.303-320
    • /
    • 2011
  • Comparing to active damage monitoring, impact localization on composite by using time reversal focusing method has several difficulties. First, the transfer function of the actuator-sensor path is difficult to be obtained because of the limitation that no impact experiment is permitted to perform on the real structure and the difficulty to model it because the performance of real aircraft composite is much more complicated comparing to metal structure. Second, the position of impact is unknown and can not be controlled as the excitation signal used in the active monitoring. This makes it not applicable to compare the difference between the excitation and the focused signal. Another difficulty is that impact signal is frequency broadband, giving rise to the difficulty to process virtual synthesis because of the highly dispersion nature of frequency broadband Lamb wave in plate-like structure. Aiming at developing a practical method for on-line localization of impact on aircraft composite structure which can take advantage of time reversal focusing and does not rely on the transfer function, a PZT sensor array based phase synthesis time reversal impact imaging method is proposed. The complex Shannon wavelet transform is presented to extract the frequency narrow-band signals from the impact responded signals of PZT sensors. A phase synthesis process of the frequency narrow-band signals is implemented to search the time reversal focusing position on the structure which represents the impact position. Evaluation experiments on a carbon fiber composite structure show that the proposed method realizes the impact imaging and localization with an error less than 1.5 cm. Discussion of the influence of velocity errors and measurement noise is also given in detail.

Implementation of Regional Cerebral Blood Volume Map Using Perfusion Magnetic Resonance Image Process Algorithm (관류자기공명 영상처리 알고리즘을 이용한 대뇌 혈류량 맵의 구현)

  • Park Byung-Rae
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.5
    • /
    • pp.296-304
    • /
    • 2005
  • Quantitative analysis compare to dynamic characteristic change of the regional cerebral blood volume(rCBV) after development of cerebral fat embolism in cats using perfusion magnetic resonance(MR) Imaging. Twenty cats were used. Linoleic acid (n=11) were injected into the internal carotid artery using microcatheter through the transfemoral approach. Polyvinyl alcohol (Ivalon) (n=9) was injected as a control group. Perfusion MR images were obtained at 30 minutes and 2 hours after embolization, based on T2 and diffusion-weighted images. The data was time-to-signal intensity curve and ${\Delta}R_2^*$ curve were obtained continuously with the aid of home-maid image process algorithm and IDL(interactive data Banguage, USA) softwares. The ratios of rCBV increased significantly at 2 hours compared with those of 30 minutes (P<0.005). In conclusion, cerebral blood flow decreased in cerebral fat embolism immediately after embolization and recovered remarkably in time course. It is thought that clinically informations to dynamic characteristic change of the cerebral hemodynamics to the early finding in cerebral infarction by diffusion weighted imaging(DWI) and perfusion weighted imaging(PWI).

  • PDF

Structural Damage Detection by Using the Time-Reversal Process of Lamb Waves and the Imaging Method (Lamb파의 시간-반전과정 및 이미지기법을 이용한 손상탐지)

  • Jun, Yong-Ju;Lee, U-Sik
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.4
    • /
    • pp.320-326
    • /
    • 2011
  • This paper proposes a baseline-free SHM technique in which the time-reversal process of Lamb waves and the imaging method are used. The proposed SHM technique has three distinct features when compared with the authors' previously proposed one: (1) It use the reconstructed signal for damage diagnosis, without need to extract the damage signal as the difference between reconstructed signal and initial input signal; (2) It use the imaging method based on the time-offlight information from the reconstructed signal, instead of using a pattern comparison method; (3) In order to make the damage image more clear, the modified mathematical definition of damage image in a pixel is used. The proposed SHM technique is evaluated through the damage detection experiment for an aluminum plate with damage at different locations.