• 제목/요약/키워드: Imaging Process

검색결과 1,014건 처리시간 0.032초

Importance of Volumetric Measurement Processes in Oncology Imaging Trials for Screening and Evaluation of Tumors as Per Response Evaluation Criteria in Solid Tumors

  • Vemuri, Ravi Chandra;Jarecha, Rudresh;Hwi, Kim Kah;Gundamaraju, Rohit;MaruthiKanth, Aripaka;Kulkarni, AravindRao;Reddy, Sundeep
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권5호
    • /
    • pp.2375-2378
    • /
    • 2014
  • Cancer, like any disease, is a pathologic biological process. Drugs are designed to interfere with the pathologic process and should therefore also be validated using a functional screening method directed at these processes. Screening for cancers at an appropriate time and also evaluating results is also very important. Volumetric measurement helps in better screening and evaluation of tumors. Volumetry is a process of quantification of the tumors by identification (pre-cancerous or target lesion) and measurement. Volumetric image analysis allows an accurate, precise, sensitive, and medically valuable assessment of tumor response. It also helps in identifying possible outcomes such disease progression (PD) or complete response as per Response Evaluation Criteria in Solid Tumors (RECIST).

X-ray 미세영상기법을 이용한 식물 목질부 내부 수액 유동의 계측 (In Vivo Visualization of Flow in Xylem Vessels of a Bamboo Using X-ray Micro-imaging Technique)

  • 김양민;이상준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1693-1696
    • /
    • 2004
  • Synchrotron X-ray micro-imaging technique was employed to monitor non-invasively the refilling process of water inside the xylem vessels in bamboo leaves. The consecutive phase-contrast X-ray images clearly show both plant anatomy and the transport of water inside the xylem vessels. Traces of water-rise, vapor bubbles and variations of contact angle between the water front and the xylem wall were measured in real time. During the refilling process, air bubbles are removed when the rising water front halts at a vessel end for a while. Subsequently, it starts rising again at a higher velocity than the normal refilling speed. Repeated cavitation seems to deteriorate the refilling ability in xylem vessels. In dark environment, the water refilling process in xylem vessels is facilitated more effectively than in bright illuminated conditions. Finally, X-ray micro-imaging was famed to be a powerful, high resolution, real time imaging tool to investigate the water refilling process in xylem vessels.

  • PDF

전자빔 몬테 카를로 시물레이션 프로그램 개발 및 전자현미경 이미징 특성 분석 (Development of Electron Beam Monte Carlo Simulation and Analysis of SEM Imaging Characteristics)

  • 김흥배
    • 한국정밀공학회지
    • /
    • 제29권5호
    • /
    • pp.554-562
    • /
    • 2012
  • Processing of Scanning electron microscope imaging has been analyzed in both secondary electron (SE) imaging and backscattered electron (BSE) image. Because of unique characteristics of both secondary electron and backscattered electron image, mechanism of imaging process and image quality are quite different each other. For the sake of characterize imaging process, Monte Carlo simulation code have been developed. It simulates electron penetration and depth profile in certain material. In addition, secondary electron and backscattered electron generation process as well as their spatial distribution and energy characteristics can be simulated. Geometries that has fundamental feature have been imaged using the developed Monte Carlo code. Two, SE and BSE images generation process will be discussed. BSE imaging process can be readily used to discriminate in both material and geometry by simply changing position and direction of BSE detector. The developed MC code could be useful to design BSE detector and their position. Furthermore, surface reconstruction technique is possibly developed at the further research efforts. Basics of Monte Carlo simulation method will be discussed as well as characteristics of SE and BSE images.

전자사진용 화상시스템의 화상개선 알고리즘 (Image Enhancement Algorithm in Imaging Systems for Electronic Photography)

  • 박용주;김지홍
    • 한국인쇄학회지
    • /
    • 제20권1호
    • /
    • pp.133-145
    • /
    • 2002
  • 전자사진은 디지털 기술의 급속한 발전에 의하여 그 응용 범위가 확대되고있으나, 은염사진과 원리와 특성이 근본적으로 다르며 은염사진에 익숙한 사용자에게도 은염사진과 유사한 특성을 보이도록 화상의 개선과 화질의 보정 등이 요구된다. 본 논문은 은염사진의 계조 특성을 추출하여 전자화상시스템에 적용시켜 은염사진의 계조 특성을 지닌 전자화상을 출력하는 방법을 제시한다. 먼저, 은염사진과 전자사진의 화상 생성 공정을 구체적으로 비교하여 그 차이를 기술하고, 사진 계조 변환의 원리와 방법을 제시한다. 다음으로 사진 계조 변환함수를 구하기 위한 각 시스템의 특성화의 실험을 수행한 결과를 보인다. 최종적으로 이론을 바탕으로 한 실험에서는 사진 계조로 변환된 데이터를 디지털 화상시스템으로 출력하여 은염사진의 계조 특성의 비교분석을 수행한다.

  • PDF

분자영상 획득을 위한 핵의학 영상기기 (Nuclear Medicine Imaging Instrumentations for Molecular Imaging)

  • 정용현;송태용;최용
    • 대한핵의학회지
    • /
    • 제38권2호
    • /
    • pp.131-139
    • /
    • 2004
  • Small animal models are extensively utilized in the study of biomedical sciences. Current animal experiments and analysis are largely restricted to in vitro measurements and need to sacrifice animals to perform tissue or molecular analysis. This prevents researchers from observing in vivo the natural evolution of the process under study. Imaging techniques can provide repeatedly in vivo anatomic and molecular information noninvasively. Small animal imaging systems have been developed to assess biological process in experimental animals and increasingly employed in the field of molecular imaging studies. This review outlines the current developments in nuclear medicine imaging instrumentations including fused multi-modality imaging systems for small animal imaging.

렌티큘러 기법을 활용한 패션일러스트레이션의 시뮬라크르적 표현 연구 (A Study of Simulacre Expression in Fashion Illustrations, Using Lenticular Technique)

  • 이지연
    • 복식
    • /
    • 제59권8호
    • /
    • pp.152-165
    • /
    • 2009
  • The purpose of this study was to expand the expression of Fashion Illustration using Lenticular imaging process. In the 2-dimensional pictures, Lenticular imaging process can be effective to make multiple, virtual and variable images, which are assumed the main characteristics of modern Fashion Illustration. For this study, the main characteristics of digital based fashion trend and Fashion Illustration were analyzed. The main characteristics of digital based fashion were 'Interaction, Variableness, Virtuality, Multiples and Hyper-text' which were related with Simulacre thinking. The main characteristics of expression in Fashion Illustration were 'Virtuality and Multiples'. The image of 'Variableness' was an important factor in digital based fashion, but it was restricted within Fashion Illustration because of the 2-dimensional picture. Therefore, the Lenticular imaging process was proposed as an effective method to expand 2-dimensional limit, giving an effect of 'Variableness' in Fashion Illustration. Based on this study, 5 illustration works were proposed. The Lenticular imaging process was applied in making the images of 'Virtuality, Multiples and Variableness' in 5 works. The result of this study can be a basic material to understand the characteristics of modern Fashion Illustration as a meaningful sub-culture, and diverse expressions corresponding with the phases of the times.

MicroSPECT and MicroPET Imaging of Small Animals for Drug Development

  • Jang, Beom-Su
    • Toxicological Research
    • /
    • 제29권1호
    • /
    • pp.1-6
    • /
    • 2013
  • The process of drug discovery and development requires substantial resources and time. The drug industry has tried to reduce costs by conducting appropriate animal studies together with molecular biological and genetic analyses. Basic science research has been limited to in vitro studies of cellular processes and ex vivo tissue examination using suitable animal models of disease. However, in the past two decades new technologies have been developed that permit the imaging of live animals using radiotracer emission, X-rays, magnetic resonance signals, fluorescence, and bioluminescence. The main objective of this review is to provide an overview of small animal molecular imaging, with a focus on nuclear imaging (single photon emission computed tomography and positron emission tomography). These technologies permit visualization of toxicodynamics as well as toxicity to specific organs by directly monitoring drug accumulation and assessing physiological and/or molecular alterations. Nuclear imaging technology has great potential for improving the efficiency of the drug development process.

Design and Fabrication of a Multi-modal Confocal Endo-Microscope for Biomedical Imaging

  • Kim, Young-Duk;Ahn, Myoung-Ki;Gweon, Dae-Gab
    • Journal of the Optical Society of Korea
    • /
    • 제15권3호
    • /
    • pp.300-304
    • /
    • 2011
  • Optical microscopes are widely used for medical imaging these days, but biopsy is a lengthy process that causes many problems during the ex-vivo imaging procedure. The endo-microscope has been studied to increase accessibility to the human body and to get in-vivo images to use for medical diagnosis. This research proposes a multi-modal confocal endo-microscope for bio-medical imaging. We introduce the design process for a small endoscopic probe and a coupling mechanism for the probe to make the multi-modal confocal endo-microscope. The endoscopic probe was designed to decrease chromatic and spherical aberrations, which deteriorate the images obtained with the conventional GRIN lens. Fluorescence and reflectance images of various samples were obtained with the proposed endo-microscope. We evaluated the performance of the proposed endo-microscope by analyzing the acquired images, and demonstrate the possibilities of in-vivo medical imaging for early diagnosis.

Coherent Diffraction Imaging at PAL-XFEL

  • Kim, Sangsoo;Nam, Kihyun;Park, Jaehyun;Kim, Kwangoo;Kim, Bongsoo;Ko, Insoo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.85.2-85.2
    • /
    • 2016
  • With the advent of ultra-short high-intense XFEL (X-ray Free Electron Laser), time-resolved dynamics has become of great importance in exploring femtosecond real-world phenomena of nanoscience and biology. These include studying the response of materials to femtosecond laser excitation and investigating the interaction of XFEL itself with condensed matter. A variety of dynamic phenomena have been investigated such as radiation damage, ultrafast melting process, non-equilibrium phase transitions caused by orbital-lattice-spin couplings. As far as bulk materials are concerned, the sample size has no effect on the following dynamic process. As a result, imaging information is not required by and large. If the sample size is of tens of nanometers, however, sample starts to experience quantum confinement effect which, in turn, affects the following dynamic process. Therefore, to understand the fundamental dynamic phenomena in nano-science, time-resolved imaging information is essential. In this talk, we will briefly introduce scientific highlights achieved in XFEL-based dynamics. In case of bio-imaging, recent scientific topics will be mentioned as well. Finally, we will aim to present feasible topics in ultrafast time-resolved imaging and to discuss the future plan of CXI beamline at PAL-XFEL.

  • PDF

Recent progress on three-dimensional image capture and display using integral imaging

  • Park, Jae-Hyeung;Kim, Nam
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1250-1253
    • /
    • 2009
  • Integral imaging provides an efficient way to display three-dimensional images with high degree of viewing freedom. Pickup process of integral imaging can also be utilized to acquire three-dimensional contents for displays. This paper introduces basic principle and recent progress of integral imaging technique.

  • PDF