• Title/Summary/Keyword: Imaging Measurement Technique

Search Result 194, Processing Time 0.024 seconds

3-D Surface Profile Measurement Using An Acousto-optic Tunable Filter Based Spectral Phase Shifting Technique

  • Kim, Dae-Suk;Cho, Yong-Jai
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.281-287
    • /
    • 2008
  • An acousto-optic tunable filter based 3-D micro surface profile measurement using an equally spaced 5 spectral phase shifting is described. The 5-bucket spectral phase shifting method is compared with a Fourier-transform method in the spectral domain. It can provide a fast measurement capability while maintaining high accuracy since it needs only 5 pieces of spectrally phase shifted imaging data and a simple calculation in comparison with the Fourier transform method that requires full wavelength scanning data and relatively complicated computation. The 3-D profile data of micro objects can be obtained in a few seconds with an accuracy of ${\sim}10nm$. The 3-D profile method also has an inherent benefit in terms of being speckle-free in measuring diffuse micro objects by employing an incoherent light source. Those simplicity and practical applicability is expected to have diverse applications in 3-D micro profilometry such as semiconductors and micro-biology.

[ $T_2$ ]-relaxation Time Measurement of ex vivo $^1H$ MR Metabolite Peaks for Evaluation of Human Stomach Cancer

  • Mun Chi-Woong;Choi Ki-Sueng;Shin Oon-Jae;Yang Young-Ill;Chang Hee-Kyung;Hu Xiaoping;Eun Chung-Ki
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.2
    • /
    • pp.53-58
    • /
    • 2006
  • In this study, transverse relaxation time (T2) measurement and the evaluation of the characteristics of the spectral peak related to stomach tissue metabolites were performed using ex vivo proton magnetic resonance spectroscopic imaging (MRSI) at 1.5-T MRI/S instruments. Thirty-two gastric tissues resected from 12 patients during gastric cancer surgery, of which 19 were normal tissue and 13 were cancerous tissue, were used to measure the $T_2$ of the magnetic resonance spectroscopy (MRS) peaks. The volume of interest data results from the MRSI measurements were extracted from the proper muscle (MUS) layer and the composite mucosa/submucosa (MC/SMC) layer and were statistically analyzed. MR spectra were acquired using the chemical shift imaging (CSI) point resolved spectroscopy (CSI-PRESS) technique with the parameters of pulse repetition time (TR) and echo times (TE) TR/(TE1,TE2)=1500 msec/(35 msec, 144 msec), matrix $size=24{\times}24$, NA=1, and voxel $size=2.2{\times}2.2{\times}4mm^3$. In conclusion, the measured $T_2$ of the metabolite peaks, such as choline (3.21ppm) and lipid (1.33ppm), were significantly decreased (p<0.01 and p<0.05, respectively) in the cancerous stomach tissue.

Fabrication Measurement and Evaluation of a Parabolic Mirror with the Diameter of 450 mm(f/2.7) by Autostigmatic Null Lens System (자동무수차점 방식 널 렌즈 광학계를 이용한 직경 450 mm(f/2.7) 포물면경의 제작 및 측정 평가)

  • Lee, Young-Hun;Jo, Jae-Heung;Rim, Cheon-Seog;Lee, Yun-Woo;Yang, Ho-Soon;Lee, Jae-Hyeob;Lee, In-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.2
    • /
    • pp.165-174
    • /
    • 2006
  • The autotstigmatic null lens system is designed and constructed for the fabrication of a parabolic mirror with the diameter of 450 mm(f/2.7). And the measurement reliability is also analyzed theoretically by means of the tolerancing technique using lens design software(CODE V). From this analysis, we can precisely fabricate a parabolic mirror with the large diameter of 450 mm(f/2.7). Meanwhile, in order to confirm the fabrication results by the autostigmatic method, the mirror surface is tested again by an autocollimating method that uses only a plane mirror without any null lens.

Volumetric Bone Mineral Density Measurement: for Surgery Specific Bone Volumes (체적골밀도 측정법 동향: 수술부위 골밀도 분석)

  • Lee, Yeon Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.1
    • /
    • pp.53-59
    • /
    • 2022
  • DEXA, as the standard areal bone mineral density (aBMD) measurement method, often shows an insuficient correlation between aBMDs of the measured bones and referring bones and is inaccurate due to the mass effect. In contrast, quantitative computer tomography (QCT), as a volumetric BMD (vBMD) measurement method, is being advanced so that it uses less radiation before, owing to improved CT device and computer imaging technology. Because dual-energy CTs can modulate the image signals showing tumor or specific chemicals as well as the ability to measure vBMD, they are expanding their application. For pre-checking vBMD of surgeon-specific bone volume at implantation candidate sites, a finite element creation-based local vBMD measurement technique was developed. The local vBMD measurement function for surgeon-specific shape volumes will be added to clinical imaging systems.

Implementation of a Coded Aperture Imaging System for Gamma Measurement and Experimental Feasibility Tests

  • Kim, Kwangdon;Lee, Hakjae;Jang, Jinwook;Chung, Yonghyun;Lee, Donghoon;Park, Chanwoo;Joung, Jinhun;Kim, Yongkwon;Lee, Kisung
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.1
    • /
    • pp.66-70
    • /
    • 2017
  • Radioactive materials are used in medicine, non-destructive testing, and nuclear plants. Source localization is especially important during nuclear decommissioning and decontamination because the actual location of the radioactive source within nuclear waste is often unknown. The coded-aperture imaging technique started with space exploration and moved into X-ray and gamma ray imaging, which have imaging process characteristics similar to each other. In this study, we simulated $21{\times}21$ and $37{\times}37$ coded aperture collimators based on a modified uniformly redundant array (MURA) pattern to make a gamma imaging system that can localize a gamma-ray source. We designed a $21{\times}21$ coded aperture collimator that matches our gamma imaging detector and did feasibility experiments with the coded aperture imaging system. We evaluated the performance of each collimator, from 2 mm to 10 mm thicknesses (at 2 mm intervals) using root mean square error (RMSE) and sensitivity in a simulation. In experimental results, the full width half maximum (FWHM) of the point source was $5.09^{\circ}$ at the center and $4.82^{\circ}$ at the location of the source was $9^{\circ}$. We will continue to improve the decoding algorithm and optimize the collimator for high-energy gamma rays emitted from a nuclear power plant.

Near-field mode Profile measurement of waveguides using a nano-aperture scanning technique (나노 분해능 주사 기술을 이용한 광도파로의 근접장 모드 측정)

  • 육영춘;박건욱;박용우;성낙현;김덕영
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.18-19
    • /
    • 2001
  • 일반적으로 weakly guiding되는 waveguide의 mode field profile을 측정하기 위해서는 CCD 카메라와 imaging lens를 사용하여 field distribution을 측정한다. 하지만, 이러한 방법은 빛의 회절한계 현상 때문에 특수 광섬유에서 guiding되는 빛을 높은 분해능으로 측정 할 수 없다는 단점이 있다. 따라서 빛의 회절현상을 극복하기 위해서는 빛이 회절 되기 전의 근접장 영역에서 mode field profile을 측정하는 방법이 필요하다. (중략)

  • PDF

Structural Damage Diagnosis Method by Using the Time-Reversal Property of Guided Waves (유도초음파의 시간.역전 현상을 활용한 구조손상 진단기법)

  • Lee, U-Sik;Choi, Jung-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.64-74
    • /
    • 2010
  • This paper proposes a new TR-based baseline-free SHM technique in which the time-reversal (TR) property of the guided Lamb waves is utilized. The new TR-based SHM technique has two distinct features when compared with the other TR-based SHM techniques: (1) The backward TR process commonly conducted by the measurement is replaced by the computation-based process; (2) In place of the comparison method, the TOF information of the damage signal extracted from the reconstructed signal is used for the damage diagnosis in conjunction with the imaging method which enables us to represent the damage as an image. The proposed TR-based SHM technique is then validated through the damage diagnosis experiment for an aluminum plate with a damage at different locations.

A numerical method for improving the reliability of knee translation measurement in skin marker-based motion analysis

  • Wang, Hongsheng;Zheng, Nigel
    • Advances in biomechanics and applications
    • /
    • v.1 no.4
    • /
    • pp.269-277
    • /
    • 2014
  • In skin-marker based motion analysis, knee translation measurement is highly dependent on a pre-selected reference point (functional center) on each segment determined by the location of anatomical landmarks. However, the placement of skin markers on palpable anatomical landmarks (i.e., femoral epicondyles) has limited reproducibility. Thus, it produces large variances in knee translation measurement among different subjects, as well as across studies. In order improve the repeatability of knee translation measurement, in this study an optimization method was introduced, by which the femoral functional center was numerically determined. At that point the knee anteroposterior translation during the stance phase of walking was minimized. This new method was tested on 30 healthy subjects during walking in gait lab with motion capture system. Using this new method, the impact of skin marker position (at anatomical landmarks) on the knee translation measurement has been minimized. In addition, the ranges of anteroposterior knee translations during stance phase were significantly (p<0.001) smaller than those measured by conventional method which relies on a pre-selected functional center ($11.1{\pm}3.5mm$ vs. $19.9{\pm}5.5mm$). The results of anteroposterior translation using this new method were very close to a previously reported knee translation (12.4 mm) from dual fluoroscopic imaging technique. Moreover, this new method increased the reproducibility of knee translation measurement by 50%.

Application of 4-D resistivity imaging technique to visualize the migration of injected materials in subsurface (지하주입 물질 거동 규명을 위한 4차원 전기비저항 영상화)

  • Kim, Jung-Ho;Yi, Myeong-Jong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.12a
    • /
    • pp.31-42
    • /
    • 2007
  • Dc resistivity monitoring has been increasingly used in order to understand the changes of subsurface conditions in terms of conductivity. The commonly adopted interpretation approach which separately inverts time-lapse data may generate inversion artifacts due to measurement error. Eventually the contaminated error amplifies the artifacts when reconstructing the difference images to quantitatively estimate the change of ground condition. In order to alleviate the problems, we defined the subsurface structure as four dimensional (4-D) space-time model and developed 4-D inversion algorithm which can calculate the reasonable subsurface structure continuously changing in time even when the material properties change during data measurements. In this paper, we discussed two case histories of resistivity monitoring to study the ground condition change when the properties of the subsurface material were artificially altered by injecting conductive materials into the ground: (1) dye tracer experiment to study the applicability of electrical resistivity tomography to monitoring of water movement in soil profile and (2) the evaluation of cement grouting performed to reinforce the ground. Through these two case histories, we demonstrated that the 4-D resistivity imaging technique is very powerful to precisely delineate the change of ground condition. Particularly owing to the 4-D inversion algorithm, we were able to reconstruct the history of the change of subsurface material property.

  • PDF

A Method for Evaluating the Temperature Coefficient of a Compound Semiconductor Energy Gap by Infrared Imaging Technique (적외선 영상기법에 의한 화합물 반도체 에너지갭의 온도계수 측정 방법)

  • Kang, Seong-Jun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.5
    • /
    • pp.338-346
    • /
    • 2001
  • An infrared imaging method in which direct measurement of energy gap variations can be achieved by digital image processing is proposed. This method allows economic and easy evaluation of the temperature coefficients of a semiconductor energy gap. The key components of the method are a polychromator, a computer equipped with a frame grabber and a variable temperature cryostat. Tentative experimentation conducted on LEC grown semi-insulating GaAs has resulted in a fairly good agreement with the theoretical model. This proposed method could be applicable for most compound semiconductors.

  • PDF