• Title/Summary/Keyword: Imaging Measurement Technique

Search Result 194, Processing Time 0.028 seconds

Investigating Volumetric changes of Brain Structure in Women Aged 65 to 85 Years Old (65세부터 85세 여성의 뇌 구조 부피 변화 조사)

  • Kim, Yong-Wane
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.947-956
    • /
    • 2020
  • The human body becomes vulnerable to various diseases due to deterioration in structure and function as it ages. In particular, changes in brain structure weaken the immune system against diseases such as vascular and metabolic neuropsychiatric diseases. In this study, we used a magnetic resonance imaging technique that allows non-invasive observation of brain structures and measurement of how the volumes of the brain, gray matter, white matter, and subcortical regions changes with aging in women aged 65 to 85 years. As a result of our investigation, we observed a significant linear decrease in subcortical regions with age. These results suggest that the changes due to aging in the brain structure area are closely related to neuropsychiatric diseases in old age, and can provide information in understanding the vulnerability of the brain in old age.

X-ray properties measurement of Flat panel Digital X-ray gas detector (평판형 디지털 엑스레이 가스 검출기의 엑스선 특성 측정기술에 관한 연구)

  • Yoon, Min-Seok;Cho, Sung-Ho;Oh, Kyung-Min;Jung, Suk-Hee;Nam, Sang-Hee;Park, Ji-Goon
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.1
    • /
    • pp.17-21
    • /
    • 2009
  • The Recently, large area matrix-addressed image detectors are investigated for X-ray imaging with medical diagnostic and other applications. In this paper, a new flat panel gas detector for diagnostic X-ray imaging is proposed, and its characteristics are investigated. The research of flat panel gas detector is not exist at all. Because of difficulty to inject gas against to atmospheric pressure. So almost gas detector made by chamber shape. We made flat panel sample by display technique. (ex: PDP, Fed, etc.) The experimental measurements, the transparent electrodes, dielectric layer, and the MgO protection layer were formed in front glass. And, the X-ray phosphor layer and address electrodes are formed in the rare glass. The dark current, the x-ray sensitivity and linearity as a function of electric field were measured to investigate the electrical properties. From the results, the stabilized dark current density and the significant x-ray sensitivity were obtained. And the good linearity as a function of exposure dose was showed in wide diagnostic energy range. These results means that the passive matrix-addressed flat panel gas detector can be used for digital x-ray imaging.

  • PDF

${T_2}weighted$- Half courier Echo Planar Imaging

  • 김치영;김휴정;안창범
    • Investigative Magnetic Resonance Imaging
    • /
    • v.5 no.1
    • /
    • pp.57-65
    • /
    • 2001
  • Purpose : $T_2$-weighted half courier Echo Planar Imaging (T2HEPI) method is proposed to reduce measurement time of existing EPI by a factor of 2. In addition, high $T_2$ contrast is obtained for clinical applications. High resolution single-shot EPI images with $T_2$ contrast are obtained with $128{\times}128$ matrix size by the proposed method. Materials and methods : In order to reduce measurement time in EPI, half courier space is measured, and rest of half courier data is obtained by conjugate symmetric filling. Thus high resolution single shot EPI image with $128{\times}128$ matrix size is obtained with 64 echoes. By the arrangement of phase encoding gradients, high $T_2$ weighted images are obtained. The acquired data in k-space are shifted if there exists residual gradient field due to eddy current along phase encoding gradient, which results in a serious problem in the reconstructed image. The residual field is estimated by the correlation coefficient between the echo signal for dc and the corresponding reference data acquired during the pre-scan. Once the residual gradient field is properly estimated, it can be removed by the adjustment of initial phase encoding gradient field between $70^{\circ}$ and $180^{\circ}$ rf pulses. Results : The suggested T2EPl is implemented in a 1.0 Tela whole body MRI system. Experiments are done with the effective echo times of 72ms and 96ms with single shot acquisitions. High resolution($128{\times}128$) volunteer head images with high $T_2$ contrast are obtained in a single scan by the proposed method. Conclusion : Using the half courier technique, higher resolution EPI images are obtained with matrix size of $128{\times}128$ in a single scan. Furthermore $T_2$ contrast is controlled by the effective echo time. Since the suggested method can be implemented by software alone (pulse sequence and corresponding tuning and reconstruction algorithms) without addition of special hardware, it can be widely used in existing MRI systems.

  • PDF

Evaluation of the Impact Force on the Single Spray and Overlap Region of Twin Spray in Full Cone Type Swirl Nozzle (Full Cone Type 스월노즐에서 단일분무와 이중분무의 중첩영역에 대한 충격력 평가)

  • Kim, T.H.;Sung,, Y.M.;Jeong, H.C.;Kim, D.J.;Choi, G.M.
    • Journal of ILASS-Korea
    • /
    • v.16 no.1
    • /
    • pp.27-36
    • /
    • 2011
  • The impact force on the single and overlap region of twin spray was experimentally evaluated using visualization method in full cone type swirl nozzle spray. Visualization of spray was conducted to obtain the spray angle and breakup process. The photography/imaging technique, based on Particle Image Velocimetry (PIV) using high-speed camera, was adopted for the direct observation of droplet motion and axial velocity measurement, respectively. Droplet size was measured by Particle Motion Analyze System (PMAS). The purpose of this study is to provide fundamental information of spray characteristics, such as impact force, for higher etching factor in the practical wet etching system. It was found that the spray angle, axial velocity and impact force were increased with increasing the nozzle pressure while droplet size decreased with increasing the nozzle pressure. Droplet size increased as the distance from nozzle tip was decreased. The impact force of twin spray in the overlap region was about 63.29, 67.02, 52.41% higher than that of single spray at 40, 50 and 60 mm of nozzle pitch, respectively. Also, the nozzle pitch was one of the important factors in the twin spray characteristics.

Monitoring and Forecasting the Eyjafjallajökull Volcanic Ash using Combination of Satellite and Trajectory Analysis (인공위성 관측자료와 궤적분석을 이용한 Eyjafjallajökull 화산재 감시와 예측)

  • Lee, Kwon Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.2
    • /
    • pp.139-149
    • /
    • 2014
  • A new technique, namely the combination of satellite and trajectory analysis (CSTA), for exploring the spatio-temporal distribution information of volcanic ash plume (VAP) from volcanic eruption. CSTA uses the satellite derived ash property data and a matching forward-trajectories, which can generate airmass history pattern for specific VAP. In detail, VAP properties such as ash mask, aerosol optical thickness at 11 ${\mu}m$ ($AOT_{11}$), ash layer height, and effective radius from the Moderate Resolution Imaging Spectro-radiometer (MODIS) satellite were retrieved, and used to estimate the possibility of the ash forecasting in local atmosphere near volcano. The use of CSTA for Iceland's Eyjafjallaj$\ddot{o}$kull volcano erupted in May 2010 reveals remarkable spatial coherence for some VAP source-transport pattern. The CSTA forecasted points of VAP are consistent with the area of MODIS retrieved VAP. The success rate of the 24 hour VAP forecast result was about 77.8% in this study. Finally, the use of CSTA could provide promising results for VAP monitoring and forecasting by satellite observation data and verification with long term measurement dataset.

Study of Optical Tomography for Measurement of Spray Characteristics at High Ambient Pressure (고압 환경에서의 분무 특성 계측을 위한 광학 토모그래피 기법 연구)

  • Cho, Seong-Ho;Im, Ji-Hyuk;Choi, Ho-Yeon;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.4
    • /
    • pp.36-44
    • /
    • 2009
  • Spray cross-section was measured by the Optical Line Patternator (OLP) and Optical Tomography at high ambient pressure. The laser line beam passed through the spray region, then Mie scattered signal and transmitted light were captured. The measured signal was processed to obtain a distribution of attenuation coefficient in spray cross-section. Beer-Lambert's law and mathematical reconstruction methods were used to reconstruct the distribution of attenuation coefficient. Spray became dense at high pressure and attenuation of scattered signal occurred seriously. OLP method, which uses Mie scattered signal, showed limit in compensating attenuation problem in dense spray region. Optical tomography reconstructed spray cross-section well, from transmission rate of light penetrating spray region.

Compression and Enhancement of Medical Images Using Opposition Based Harmony Search Algorithm

  • Haridoss, Rekha;Punniyakodi, Samundiswary
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.288-304
    • /
    • 2019
  • The growth of telemedicine-based wireless communication for images-magnetic resonance imaging (MRI) and computed tomography (CT)-leads to the necessity of learning the concept of image compression. Over the years, the transform based and spatial based compression techniques have attracted many types of researches and achieve better results at the cost of high computational complexity. In order to overcome this, the optimization techniques are considered with the existing image compression techniques. However, it fails to preserve the original content of the diagnostic information and cause artifacts at high compression ratio. In this paper, the concept of histogram based multilevel thresholding (HMT) using entropy is appended with the optimization algorithm to compress the medical images effectively. However, the method becomes time consuming during the measurement of the randomness from the image pixel group and not suitable for medical applications. Hence, an attempt has been made in this paper to develop an HMT based image compression by utilizing the opposition based improved harmony search algorithm (OIHSA) as an optimization technique along with the entropy. Further, the enhancement of the significant information present in the medical images are improved by the proper selection of entropy and the number of thresholds chosen to reconstruct the compressed image.

Development of a Lightweight Prediction Model of Fuel Injection Rates from High Pressure Fuel Injectors (고압 인젝터의 분사율 예측을 위한 경량 모델 개발)

  • Lee, Sanggwon;Bae, Gyuhan;Atac, Omer Faruk;Moon, Seoksu;Kang, Jinsuk
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.188-195
    • /
    • 2020
  • To meet stringent emission regulations of automotive engines, fuel injection control techniques have advanced based on reliable and fast computing prediction models. This study aims to develop a reliable lightweight prediction model of fuel injection rates using a small number of input parameters and based on simple fluid dynamic theories. The prediction model uses the geometry of the injector nozzle, needle motion data, injection conditions and the fuel properties. A commercial diesel injector and US No. 2 diesel were used as the test injector and fuel, respectively. The needle motion data were measured using X-ray phase-contrast imaging technique under various fuel injection pressures and injection pulse durations. The actual injector rate profiles were measured using an injection rate meter for the validation of the model prediction results. In the case of long injection durations with the steady-state operation, the model prediction results showed over 99 % consistency with the measurement results. However, in the case of short injection cases with the transient operation, the prediction model overestimated the injection rate that needs to be further improved.

3D Precision Measurement of Scanning Moire Using Line Scan Camera (라인스캔 카메라를 이용한 3차원 정밀 측정)

  • Kim, Hyun-Ju;Yoon, Doo-Hyun;Kim, Hak-Il
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.5
    • /
    • pp.376-380
    • /
    • 2008
  • This paper presents the Projection Moire method using a line scan camera. The high resolution feature of a line scan camera makes it possible to scan an image quickly, thus enabling a much quicker 3D profile. This method uses a high resolution line scan camera making it possible to scan an image at high speed simultaneously measuring the 3D profile of a large FOV. When using a high resolution scan camera, a full FOV is scanned, thus requiring just one movement of a projection grating. As a result, the number of grating movements is reduced drastically. The end result is a faster and more accurate 3D measurement. Moving the grating too quickly causes vibration in the imaging system, which will normally be required to apply a stitching technique when using an area scan camera. However the technique is not required when using a line scan camera. Compared with the previous techniques, it has the advantages of simple hardware without moving mechanical parts - single exposure for obtaining three-dimensional information. A method using a high resolution line scan camera can be used in mass production to measure the bump height of wafers or the bump height of package substrates.

A High-speed Atomic Force Microscope for Precision Measurement of Microstructured Surfaces

  • Cui, Yuguo;Arai, Yoshikazu;Asai, Takemi;Ju, BinFeng;Gao, Wei
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.27-32
    • /
    • 2008
  • This paper describes a contact atomic force microscope (AFM) that can be used for high-speed precision measurements of microstructured surfaces. The AFM is composed of an air-bearing X stage, an air-bearing spindle with the axis of rotation in the Z direction, and an AFM probe unit. The traversing distance and maximum speed of the X stage are 300 mm and 400 mm/s, respectively. The spindle has the ability to hold a sample in a vacuum chuck with a maximum diameter of 130 mm and has a maximum rotation speed of 300 rpm. The bandwidth of the AFM probe unit in an open loop control circuit is more than 40 kHz. To achieve precision measurements of microstructured surfaces with slopes, a scanning strategy combining constant height measurements with a slope compensation technique is proposed. In this scanning strategy, the Z direction PZT actuator of the AFM probe unit is employed to compensate for the slope of the sample surface while the microstructures are scanned by the AFM probe at a constant height. The precision of such a scanning strategy is demonstrated by obtaining profile measurements of a microstructure surface at a series of scanning speeds ranging from 0.1 to 20.0 mm/s.