Although Marguerite Yourcenar, a representative French woman writer, lived 47 years in the United States from 1939 to 1987, the American influence on her life has not been studied either at home or abroad. The purpose of this study is to examine chronologically the American influence on the following three literary works of Yourcenar: The Little Mermaid (1942), River Deep, Dark River (1966) and Recluse (1982). The Little Mermaid is a drama, presented in musical format, about the identity crisis and inner conflict of Yourcenar. Unlike the little mermaid who burst like a bubble in Hans Christian Andersen's fairy tale, Yourcenar associates her death with the image of ascension. River Deep, dark river is a translation of the Negro spiritual expressing the suffering of African Americans. Recluse, her last novel, deals with the life story of a simple man living in nature on a small island. This novel shows Yourcenar's desire for a pure world that is not defiled by human greed. Yourcenar sponsored major human rights organizations and environmental groups in her life, and donated her entire fortune for human rights and the protection of Wild Fauna and Flora. The American influence on the literary works of Yourcenar can be summarized as a "great turning point", because she was transformed from a humanistic writer into an intellectual actor.
We address a question of what are three main channels that can best translate other channels in ultraviolet (UV) and extreme UV (EUV) observations. For this, we compare the image translations among the nine channels of the Atmospheric Imaging Assembly on the Solar Dynamics Observatory using a deep learning model based on conditional generative adversarial networks. In this study, we develop 170 deep learning models: 72 models for single-channel input, 56 models for double-channel input, and 42 models for triple-channel input. All models have a single-channel output. Then we evaluate the model results by pixel-to-pixel correlation coefficients (CCs) within the solar disk. Major results from this study are as follows. First, the model with 131 Å shows the best performance (average CC = 0.84) among single-channel models. Second, the model with 131 and 1600 Å shows the best translation (average CC = 0.95) among double-channel models. Third, among the triple-channel models with the highest average CC (0.97), the model with 131, 1600, and 304 Å is suggested in that the minimum CC (0.96) is the highest. Interestingly they are representative coronal, photospheric, and chromospheric lines, respectively. Our results may be used as a secondary perspective in addition to primary scientific purposes in selecting a few channels of an UV/EUV imaging instrument for future solar satellite missions.
Lee Suk;Seong Jinsil;Kwon Soo I1;Chu Sung Sil;Lee Chang Geol;Suh Chang Ok
Radiation Oncology Journal
/
v.21
no.1
/
pp.100-106
/
2003
Purpose : To develop a patients' setup verification tool (PSVT) to verify the alignment of the machine and the target isocenters, and the reproduclbility of patients' setup for three dimensional conformal radiotherapy (3DCRT) and intensity modulated radiotherapy (IMRT). The utilization of this system is evaluated through phantom and patient case studies. Materials and methods : We developed and clinically tested a new method for patients' setup verification, using digitally reconstructed radiography (DRR), simulation, porial and digital images. The PSVT system was networked to a Pentium PC for the transmission of the acquired images to the PC for analysis. To verify the alignment of the machine and target isocenters, orthogonal pairs of simulation images were used as verification images. Errors in the isocenter alignment were measured by comparing the verification images with DRR of CT Images. Orthogonal films were taken of all the patients once a week. These verification films were compared with the DRR were used for the treatment setup. By performing this procedure every treatment, using humanoid phantom and patient cases, the errors of localization can be analyzed, with adjustments made from the translation. The reproducibility of the patients' setup was verified using portal and digital images. Results : The PSVT system was developed to verify the alignment of the machine and the target isocenters, and the reproducibility of the patients' setup for 3DCRT and IMRT. The results show that the localization errors are 0.8$\pm$0.2 mm (AP) and 1.0$\pm$0.3 mm (Lateral) in the cases relating to the brain and 1.1$\pm$0.5 mm (AP) and 1.0$\pm$0.6 mm (Lateral) in the cases relating to the pelvis. The reproducibility of the patients' setup was verified by visualization, using real-time image acquisition, leading to the practical utilization of our software Conclusions : A PSVT system was developed for the verification of the alignment between machine and the target isocenters, and the reproduclbility of the patients' setup in 3DCRT and IMRT. With adjustment of the completed GUI-based algorithm, and a good quality DRR image, our software may be used for clinical applications.
KIPS Transactions on Software and Data Engineering
/
v.11
no.8
/
pp.325-330
/
2022
This paper conducts the collection and experiment of datasets for deep learning research on sign language such as sign language recognition, sign language translation, and sign language segmentation for Korean sign language. There exist difficulties for deep learning research of sign language. First, it is difficult to recognize sign languages since they contain multiple modalities including hand movements, hand directions, and facial expressions. Second, it is the absence of training data to conduct deep learning research. Currently, KETI dataset is the only known dataset for Korean sign language for deep learning. Sign language datasets for deep learning research are classified into two categories: Isolated sign language and Continuous sign language. Although several foreign sign language datasets have been collected over time. they are also insufficient for deep learning research of sign language. Therefore, we attempted to collect a large-scale Korean sign language dataset and evaluate it using a baseline model named TSPNet which has the performance of SOTA in the field of sign language translation. The collected dataset consists of a total of 11,402 image and text. Our experimental result with the baseline model using the dataset shows BLEU-4 score 3.63, which would be used as a basic performance of a baseline model for Korean sign language dataset. We hope that our experience of collecting Korean sign language dataset helps facilitate further research directions on Korean sign language.
Choi, Woo Keun;Park, Su Yeon;Park, Do Keun;Song, Ki Won
The Journal of Korean Society for Radiation Therapy
/
v.25
no.2
/
pp.167-173
/
2013
Purpose: This study is to evaluate the efficacy of the CBCT and EXACTRAC the image on the spine stereotactic body radiation treatment. Materials and Methods: The study compared the accuracy of the dose distribution for changes in the real QA phantom for The shape of the body of the phantom was performed. Novalis treatment artificially set up at the center and to the right, on the Plan 1 mm, 2 mm, 3 mm in front 1 mm, 2 mm, 3 mm and upwards 1 mm, 2 mm, 3 mm and $0.5^{\circ}$ by moving side to side Exactrac error correction and error values of CBCT and plan changes on the dose distribution were recorded and analyzed. Results: Cubic Phantom of the experimental error, the error correction Exactrac X-ray 6D Translation in the direction of the 0.18 mm, Rotation direction was $0.07^{\circ}$. Translation in the direction of the 3D CBCT 0.15 mm Rotation direction was $0.04^{\circ}$. DVH dose distribution using the results of the AP evaluate the change in the direction of change was greatest when moving. Conclusion: ExacTrac image-guided radiation therapy with a common easy and fast to get pictures from all angles, from the advantage of CBCT showed a potential alternative. But every accurate information compared with CT treatment planning and treatment of patients with more accurate than the CBCT ExacTrac the location provided. Changes in the dose distribution in the experiment results show that the treatment of spinal SBRT set up some image correction due to errors at the target and enter the spinal cord dose showed that significant differences appear.
Purpose: On-line image guided radiation therapy(on-line IGRT) and(kV X-ray images or cone beam CT images) were obtained by an on-board imager(OBI) and cone beam CT(CBCT), respectively. The images were then compared with simulated images to evaluate the patient's setup and correct for deviations. The setup deviations between the simulated images(kV or CBCT images), were computed from 2D/2D match or 3D/3D match programs, respectively. We then investigated the correctness of the calculated deviations. Materials and Methods: After the simulation and treatment planning for the RANDO phantom, the phantom was positioned on the treatment table. The phantom setup process was performed with side wall lasers which standardized treatment setup of the phantom with the simulated images, after the establishment of tolerance limits for laser line thickness. After a known translation or rotation angle was applied to the phantom, the kV X-ray images and CBCT images were obtained. Next, 2D/2D match and 3D/3D match with simulation CT images were taken. Lastly, the results were analyzed for accuracy of positional correction. Results: In the case of the 2D/2D match using kV X-ray and simulation images, a setup correction within $0.06^{\circ}$ for rotation only, 1.8 mm for translation only, and 2.1 mm and $0.3^{\circ}$ for both rotation and translation, respectively, was possible. As for the 3D/3D match using CBCT images, a correction within $0.03^{\circ}$ for rotation only, 0.16 mm for translation only, and 1.5 mm for translation and $0.0^{\circ}$ for rotation, respectively, was possible. Conclusion: The use of OBI or CBCT for the on-line IGRT provides the ability to exactly reproduce the simulated images in the setup of a patient in the treatment room. The fast detection and correction of a patient's positional error is possible in two dimensions via kV X-ray images from OBI and in three dimensions via CBCT with a higher accuracy. Consequently, the on-line IGRT represents a promising and reliable treatment procedure.
The goal of radiation treatment is to deliver a prescribed radiation dose to the target volume accurately while minimizing dose to normal tissues. Due to inaccurate placement of field and shielding block and patient's movement, there could be displacement errors between the planed and treatment regions. In order to verify the location of radiation treatment, we in this study developed the registration algorithm of the x-ray simulator images and portal images and quantified the inaccuracy in terms of shift, scale and rotation. The algorithm for registration of pairs of radiation fields consists of the alignment of pairs of radiation images by points matching and field displacement analysis by field boundary matching. In the first step, paired surface landmarks are matched to calculate the transformation parameters (scale, rotation and shift) using the corresponding line pairs which are created by connecting two landmarks of each image. In the next step, portal field boundary is extracted and then the two field boundaries are matched by the $\rho$-$\theta$ technique. Applying the phantom portal images, detection errors were calculated to be less than 2mm in translation, 1$^{\circ}$ in rotation and 1% in scale. In conclusion, we quantitatively analyzed the displacement error of x-ray simulator images and portal images. The present results could contribute to the study of the radiation treatment verification.
In this paper, we propose a video enhancement method using generative adversarial networks to remove raindrops and restore the background information on the removed region in the coastal wave video imagery distorted by raindrops during rainfall. Two experimental models are implemented: Pix2Pix network widely used for image-to-image translation and Attentive GAN, which is currently performing well for raindrop removal on a single images. The models are trained with a public dataset of paired natural images with and without raindrops and the trained models are evaluated their performance of raindrop removal and background information recovery of rainwater distortion of coastal wave video imagery. In order to improve the performance, we have acquired paired video dataset with and without raindrops at the real coast and conducted transfer learning to the pre-trained models with those new dataset. The performance of fine-tuned models is improved by comparing the results from pre-trained models. The performance is evaluated using the peak signal-to-noise ratio and structural similarity index and the fine-tuned Pix2Pix network by transfer learning shows the best performance to reconstruct distorted coastal wave video imagery by raindrops.
Soil particle shape analysis was conducted with sands from Jumujun, Korea and Ras Al Khair, Saudi Arabia. Two hundred times enlarged digital images of the particles of those two sands were obtained with an optical microscope. The resolution of the digital images was $640{\times}320$. By conducting digital image processing, the coordinates of the soil particle boundary were extracted. After mapping those coordinates to the complex space, Fourier transformation was performed and the coefficients of each trigonometry term were computed. The coefficients reflect the shape characteristics of the sand grains and are invariant to translation. To evaluate the shape itself excluding the size of the soil particle, the coefficient was normalized by the equivalent radius of soil particle; this is called Fourier descriptor. After analyzing the Fourier descriptors, it was found that the major characteristics of Jumunjin and Ras Al Khair sands were elongation and asymmetry. Furthermore, it was found that the particle shapes reflect the self-similar, fractal nature of the textural features. The effects of resolution on soil particle shape analysis was also studied. Regarding this, it was found that the significant Fourier descriptors were not significantly affected by the image resolution investigated in this study, but the descriptors associated with textural features were affected.
A 2-year-old Maltese and a 5-month-old Yorkshire terrier were presented with ataxia. Tetraparesis was observed in a 9-year -old Yorkshire terrier. The localizations of the lesions suggested brain or cervical spinal cord by the neurological examination, and the following images was achieved: radiography, axial images of computed tomography (CT), reconstruction image of CT such as multi-planar reformation(MPR) and 3-dimensional(3D) reconstruction and magnetic resonance imaging (MRI). On radiography, the misalignment between atlas (C1) and axis (C2), absent dens of axis, and increased space between the dorsal arch of C1 and spinous process of C2 were found. The discontinuation between dens and body of C2 was identified through axial CT images, and the fragmentation of dens separated from axis was observed through MPR and 3D image in all case. The hyperintense lesions and the spinal cord compression on T2-weighted MR images were represented in a dog with tetraparesis, the others represented only spinal cord compression. Three dogs were diagnosed as atlantoaxial instability (AAI) by dens fracture of C2. The dog with tetraparesis was euthanized due to guarded prognosis. The others were recovered completely. It is difficult to differentiate dens fracture of C2 from abnormal dens such as agenesis and hypoplasia. We thought that CT is very useful to evaluate the dens of C2 and differentiate the causes of AAI, and the reconstruction images of CT such as MPR and 3D make the translation of the fragmented dens or axis of AAI more precisely evaluate.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.