• Title/Summary/Keyword: Image-text generation

Search Result 67, Processing Time 0.034 seconds

A Study on Image Generation from Sentence Embedding Applying Self-Attention (Self-Attention을 적용한 문장 임베딩으로부터 이미지 생성 연구)

  • Yu, Kyungho;No, Juhyeon;Hong, Taekeun;Kim, Hyeong-Ju;Kim, Pankoo
    • Smart Media Journal
    • /
    • v.10 no.1
    • /
    • pp.63-69
    • /
    • 2021
  • When a person sees a sentence and understands the sentence, the person understands the sentence by reminiscent of the main word in the sentence as an image. Text-to-image is what allows computers to do this associative process. The previous deep learning-based text-to-image model extracts text features using Convolutional Neural Network (CNN)-Long Short Term Memory (LSTM) and bi-directional LSTM, and generates an image by inputting it to the GAN. The previous text-to-image model uses basic embedding in text feature extraction, and it takes a long time to train because images are generated using several modules. Therefore, in this research, we propose a method of extracting features by using the attention mechanism, which has improved performance in the natural language processing field, for sentence embedding, and generating an image by inputting the extracted features into the GAN. As a result of the experiment, the inception score was higher than that of the model used in the previous study, and when judged with the naked eye, an image that expresses the features well in the input sentence was created. In addition, even when a long sentence is input, an image that expresses the sentence well was created.

Study on Generation of Children's Hand Drawing Learning Model for Text-to-Image (Text-to-Image를 위한 아동 손그림 학습 모델 생성 연구)

  • Lee, Eunchae;Moon, Mikyeong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.505-506
    • /
    • 2022
  • 인공지능 기술은 점차 빠른 속도로 발전되며 응용 분야가 확대되어 창작 산업에서의 역할도 커져 예술, 영화 및 기타 창조적인 산업에도 영향을 주고 있다. 이러한 인공지능 기술을 이용하여 텍스트로 설명하면 다양한 스타일의 이미지를 생성해내는 기술이 있지만 아동이 직접 그린 손그림 스타일의 그림을 생성하지는 못한다. 본 논문에서는 아동 손그림 데이터를 통해 Text-to-Image를 학습시켜 새로운 학습 모델을 생성하는 과정에 대해서 기술한다. 이 연구를 통해 생성된 픽셀을 결합하여 텍스트를 기반으로 하나의 아동 손그림을 만들 수 있을 것으로 기대한다.

  • PDF

A Study on the Generation of Webtoons through Fine-Tuning of Diffusion Models (확산모델의 미세조정을 통한 웹툰 생성연구)

  • Kyungho Yu;Hyungju Kim;Jeongin Kim;Chanjun Chun;Pankoo Kim
    • Smart Media Journal
    • /
    • v.12 no.7
    • /
    • pp.76-83
    • /
    • 2023
  • This study proposes a method to assist webtoon artists in the process of webtoon creation by utilizing a pretrained Text-to-Image model to generate webtoon images from text. The proposed approach involves fine-tuning a pretrained Stable Diffusion model using a webtoon dataset transformed into the desired webtoon style. The fine-tuning process, using LoRA technique, completes in a quick training time of approximately 4.5 hours with 30,000 steps. The generated images exhibit the representation of shapes and backgrounds based on the input text, resulting in the creation of webtoon-like images. Furthermore, the quantitative evaluation using the Inception score shows that the proposed method outperforms DCGAN-based Text-to-Image models. If webtoon artists adopt the proposed Text-to-Image model for webtoon creation, it is expected to significantly reduce the time required for the creative process.

A Feasibility Study on RUNWAY GEN-2 for Generating Realistic Style Images

  • Yifan Cui;Xinyi Shan;Jeanhun Chung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.99-105
    • /
    • 2024
  • Runway released an updated version, Gen-2, in March 2023, which introduced new features that are different from Gen-1: it can convert text and images into videos, or convert text and images together into video images based on text instructions. This update will be officially open to the public in June 2023, so more people can enjoy and use their creativity. With this new feature, users can easily transform text and images into impressive video creations. However, as with all new technologies, comes the instability of AI, which also affects the results generated by Runway. This article verifies the feasibility of using Runway to generate the desired video from several aspects through personal practice. In practice, I discovered Runway generation problems and propose improvement methods to find ways to improve the accuracy of Runway generation. And found that although the instability of AI is a factor that needs attention, through careful adjustment and testing, users can still make full use of this feature and create stunning video works. This update marks the beginning of a more innovative and diverse future for the digital creative field.

A Development for Web -based Name-plate Production System by using Image Processing

  • Kim, Gibom;Youn, Cho-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.60.2-60
    • /
    • 2001
  • In this paper, manufacturing system and Internet are combined and NC milling machine engraves image and text on nameplate. Image and text are input through Internet. And NC tool path is obtained by thinning algorithm and NC part program is generated. Thinning algorithm detects center lines from image and text by using connectivity and tool path is obtained along the center line. Actually experiments are performed and thinning algorithm and G-code generation module are verified.

  • PDF

Adversarial Shade Generation and Training Text Recognition Algorithm that is Robust to Text in Brightness (밝기 변화에 강인한 적대적 음영 생성 및 훈련 글자 인식 알고리즘)

  • Seo, Minseok;Kim, Daehan;Choi, Dong-Geol
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.276-282
    • /
    • 2021
  • The system for recognizing text in natural scenes has been applied in various industries. However, due to the change in brightness that occurs in nature such as light reflection and shadow, the text recognition performance significantly decreases. To solve this problem, we propose an adversarial shadow generation and training algorithm that is robust to shadow changes. The adversarial shadow generation and training algorithm divides the entire image into a total of 9 grids, and adjusts the brightness with 4 trainable parameters for each grid. Finally, training is conducted in a adversarial relationship between the text recognition model and the shaded image generator. As the training progresses, more and more difficult shaded grid combinations occur. When training with this curriculum-learning attitude, we not only showed a performance improvement of more than 3% in the ICDAR2015 public benchmark dataset, but also confirmed that the performance improved when applied to our's android application text recognition dataset.

Design of Image Generation System for DCGAN-Based Kids' Book Text

  • Cho, Jaehyeon;Moon, Nammee
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1437-1446
    • /
    • 2020
  • For the last few years, smart devices have begun to occupy an essential place in the life of children, by allowing them to access a variety of language activities and books. Various studies are being conducted on using smart devices for education. Our study extracts images and texts from kids' book with smart devices and matches the extracted images and texts to create new images that are not represented in these books. The proposed system will enable the use of smart devices as educational media for children. A deep convolutional generative adversarial network (DCGAN) is used for generating a new image. Three steps are involved in training DCGAN. Firstly, images with 11 titles and 1,164 images on ImageNet are learned. Secondly, Tesseract, an optical character recognition engine, is used to extract images and text from kids' book and classify the text using a morpheme analyzer. Thirdly, the classified word class is matched with the latent vector of the image. The learned DCGAN creates an image associated with the text.

A Study on the COntour Machining of Text using CNC Laser Machine (CNC레이저 가공기를 이용한 활자체 가공에 관한 연구)

  • 구영회
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.554-559
    • /
    • 1999
  • The purpose of this study is the machining of texture shapes by the contour fitting data. The hardware of the system comprises PC and scanning system, CO2 laser machine. There are four steps, (1) text image loading using scanning shapes or 2D image files, (2) generation of contour fitting data by the line and arc, cubic Bezier curve, (3) generation of NC code from the contouring fitting data, (4) machining by the DNC system. It is developed a software package, with which can conduct a micro CAM system of CNC laser machine in the PC without economical burden.

  • PDF

A general-purpose model capable of image captioning in Korean and Englishand a method to generate text suitable for the purpose (한국어 및 영어 이미지 캡션이 가능한 범용적 모델 및 목적에 맞는 텍스트를 생성해주는 기법)

  • Cho, Su Hyun;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1111-1120
    • /
    • 2022
  • Image Capturing is a matter of viewing images and describing images in language. The problem is an important problem that can be solved by keeping, understanding, and bringing together two areas of image processing and natural language processing. In addition, by automatically recognizing and describing images in text, images can be converted into text and then into speech for visually impaired people to help them understand their surroundings, and important issues such as image search, art therapy, sports commentary, and real-time traffic information commentary. So far, the image captioning research approach focuses solely on recognizing and texturing images. However, various environments in reality must be considered for practical use, as well as being able to provide image descriptions for the intended purpose. In this work, we limit the universally available Korean and English image captioning models and text generation techniques for the purpose of image captioning.

A Study on Process of Creating 3D Models Using the Application of Artificial Intelligence Technology

  • Jiayuan Liang;Xinyi Shan;Jeanhun Chung
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.346-351
    • /
    • 2023
  • With the rapid development of Artificial Intelligence (AI) technology, there is an increasing variety of methods for creating 3D models. These include innovations such as text-only generation, 2D images to 3D models, and combining images with cue words. Each of these methods has unique advantages, opening up new possibilities in the field of 3D modeling. The purpose of this study is to explore and summarize these methods in-depth, providing researchers and practitioners with a comprehensive perspective to understand the potential value of these methods in practical applications. Through a comprehensive analysis of pure text generation, 2D images to 3D models, and images with cue words, we will reveal the advantages and disadvantages of the various methods, as well as their applicability in different scenarios. Ultimately, this study aims to provide a useful reference for the future direction of AI modeling and to promote the innovation and progress of 3D model generation technology.