• Title/Summary/Keyword: Image-registration

Search Result 521, Processing Time 0.028 seconds

The Faulty Detection of COG Using Image Registration (이미지 정합을 이용한 COG 불량 검출)

  • JOO KISEE;Jeong Jong-Myeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.308-314
    • /
    • 2006
  • A line scan camera is applied to enhance COG(Chip On Glass) inspection accuracy to be measured a few micro unit. The foreign substance detection among various faulty factors has been the most difficult technology in the faulty automatic inspection step since COG pattern is very miniature and complexity. In this paper, we proposed two step area segmentation template matching method to increase matching speed. Futhermore to detect foreign substance(such as dust, scratch) with a few micro unit, the new method using gradient mask and AND operation was proposed. The proposed 2 step template matching method increased 0.3 - 0.4 second matching speed compared with conventional correlation coefficient. Also, the proposed foreign substance applied masks enhanced $5-8\%$ faulty detection rate compared with conventional no mask application method.

Video Mosaics in 3D Space

  • Chon, Jaechoon;Fuse, Takashi;Shimizu, Eihan
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.390-392
    • /
    • 2003
  • Video mosaicing techniques have been widely used in virtual reality environments. Especially in GIS field, video mosaics are becoming more and more common in representing urban environments. Such applications mainly use spherical or panoramic mosaics that are based on images taken from a rotating camera around its nodal point. The viewpoint, however, is limited to location within a small area. On the other hand, 2D-mosaics, which are based on images taken from a translating camera, can acquire data in wide area. The 2D-mosaics still have some problems : it can‘t be applied to images taken from a rotational camera in large angle. To compensate those problems , we proposed a novel method for creating video mosaics in 3D space. The proposed algorithm consists of 4 steps: feature -based optical flow detection, camera orientation, 2D-image projection, and image registration in 3D space. All of the processes are fully automatic and successfully implemented and tested with real images.

  • PDF

Investigation of light stimulated mouse brain activation in high magnetic field fMRI using image segmentation methods

  • Kim, Wook;Woo, Sang-Keun;Kang, Joo Hyun;Lim, Sang Moo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.12
    • /
    • pp.11-18
    • /
    • 2016
  • Magnetic resonance image (MRI) is widely used in brain research field and medical image. Especially, non-invasive brain activation acquired image technique, which is functional magnetic resonance image (fMRI) is used in brain study. In this study, we investigate brain activation occurred by LED light stimulation. For investigate of brain activation in experimental small animal, we used high magnetic field 9.4T MRI. Experimental small animal is Balb/c mouse, method of fMRI is using echo planar image (EPI). EPI method spend more less time than any other MRI method. For this reason, however, EPI data has low contrast. Due to the low contrast, image pre-processing is very hard and inaccuracy. In this study, we planned the study protocol, which is called block design in fMRI research field. The block designed has 8 LED light stimulation session and 8 rest session. All block is consist of 6 EPI images and acquired 1 slice of EPI image is 16 second. During the light session, we occurred LED light stimulation for 1 minutes 36 seconds. During the rest session, we do not occurred light stimulation and remain the light off state for 1 minutes 36 seconds. This session repeat the all over the EPI scan time, so the total spend time of EPI scan has almost 26 minutes. After acquired EPI data, we performed the analysis of this image data. In this study, we analysis of EPI data using statistical parametric map (SPM) software and performed image pre-processing such as realignment, co-registration, normalization, smoothing of EPI data. The pre-processing of fMRI data have to segmented using this software. However this method has 3 different method which is Gaussian nonparametric, warped modulate, and tissue probability map. In this study we performed the this 3 different method and compared how they can change the result of fMRI analysis results. The result of this study show that LED light stimulation was activate superior colliculus region in mouse brain. And the most higher activated value of segmentation method was using tissue probability map. this study may help to improve brain activation study using EPI and SPM analysis.

implementation of 3D Reconstruction using Multiple Kinect Cameras (다수의 Kinect 카메라를 이용한 3차원 객체 복원 구현)

  • Shin, Dong Won;Ho, Yo Sung
    • Smart Media Journal
    • /
    • v.3 no.4
    • /
    • pp.22-27
    • /
    • 2014
  • Three-dimensional image reconstruction allows us to represent real objects in the virtual space and observe the objects at arbitrary view points. This technique can be used in various application areas such as education, culture, and art. In this paper, we propose an implementation method of the high-quality three-dimensional object using multiple Kinect cameras released from Microsoft. First, We acquire color and depth images from triple Kinect cameras; Kinect cameras are placed in front of the object as a convergence form. Because original depth image includes some areas where have no depth values, we employ joint bilateral filter to refine these areas. In addition to the depth image problem, there is an color mismatch problem in color images of multiview system. In order to solve it, we exploit an color correction method using three-dimensional geometry. Through the experimental results, we found that three-dimensional object which is used the proposed method is more naturally represented than the original three-dimensional object in terms of the color and shape.

3D Building Reconstruction and Visualization by Clustering Airborne LiDAR Data and Roof Shape Analysis

  • Lee, Dong-Cheon;Jung, Hyung-Sup;Yom, Jae-Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.507-516
    • /
    • 2007
  • Segmentation and organization of the LiDAR (Light Detection and Ranging) data of the Earth's surface are difficult tasks because the captured LiDAR data are composed of irregularly distributed point clouds with lack of semantic information. The reason for this difficulty in processing LiDAR data is that the data provide huge amount of the spatial coordinates without topological and/or relational information among the points. This study introduces LiDAR data segmentation technique by utilizing histograms of the LiDAR height image data and analyzing roof shape for 3D reconstruction and visualization of the buildings. One of the advantages in utilizing LiDAR height image data is no registration required because the LiDAR data are geo-referenced and ortho-projected data. In consequence, measurements on the image provide absolute reference coordinates. The LiDAR image allows measurement of the initial building boundaries to estimate locations of the side walls and to form the planar surfaces which represent approximate building footprints. LiDAR points close to each side wall were grouped together then the least-square planar surface fitting with the segmented point clouds was performed to determine precise location of each wall of an building. Finally, roof shape analysis was performed by accumulated slopes along the profiles of the roof top. However, simulated LiDAR data were used for analyzing roof shape because buildings with various shapes of the roof do not exist in the test area. The proposed approach has been tested on the heavily built-up urban residential area. 3D digital vector map produced by digitizing complied aerial photographs was used to evaluate accuracy of the results. Experimental results show efficiency of the proposed methodology for 3D building reconstruction and large scale digital mapping especially for the urban area.

Application of the High Resolution Aerial Images to Estimate Nonpoint Pollution Loads in the Unit Load Approach (원단위법에 의한 비점오염부하량 산정 시 토지피복 특성을 반영하는 고해상도 항공영상의 활용방안)

  • Lee, Bum-Yeon;Lee, Chang-Hee;Lee, Su-Woong;Ha, Do
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.5
    • /
    • pp.281-291
    • /
    • 2009
  • In Total Water Pollutant Load Management System of Korea, unit load approach based on land register data is currently used for the estimation of non-point pollutant load. However, a problem raised that land register data could not always reflect the actual land surface coverages which determine runoff characteristics of non-point pollution sources. As a way to overcome this, we tried to establish quantitative relationships between the aerial images (0.4m resolution) which reflect actual land surface coverages and the land registration maps according to the 19 major designated land-use categories in Kyeongan watershed. Analyses showed different relationships according to the land-use categories. Only a few land-use categories including forestry, road and river showed essentially identical and some categories such as orchard, parking lot and sport utility site showed no relationships at all between image data and land register data. Except for the two cases, all the other categories showed statistically significant linear relationships between image data and land register data. The analyses indicate that using high resolution aerial maps is a better way to estimate non-point pollutant load. If the aerial maps are not available, application of the linear relationships as conversion factors of land register data to image data could be an possible option to estimate non-point pollutant loads for the specific land-use categories in Kyeongan watershed.

Automatic Estimation of Geometric Translations Between High-resolution Optical and SAR Images (고해상도 광학영상과 SAR 영상 간 자동 변위량 추정)

  • Han, You Kyung;Byun, Young Gi;Kim, Yong Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.3
    • /
    • pp.41-48
    • /
    • 2012
  • Using multi-sensor or multi-temporal high resolution satellite images together is essential for efficient applications in remote sensing area. The purpose of this paper is to estimate geometric difference of translations between high-resolution optical and SAR images automatically. The geometric and radiometric pre-processing steps were fulfilled to calculate the similarity between optical and SAR images by using Mutual Information method. The coarsest-level pyramid images of each sensor constructed by gaussian pyramid method were generated to estimate the initial translation difference of the x, y directions for calculation efficiency. The precise geometric difference of translations was able to be estimated by applying this method from coarsest-level pyramid image to original image in order. Yet even when considered only translation between optical and SAR images, the proposed method showed RMSE lower than 5m in all study sites.

Clustering of 2D-Gel images (2H-Gel 이미지의 정렬 및 클러스터링)

  • Hur Won
    • KSBB Journal
    • /
    • v.20 no.2 s.91
    • /
    • pp.71-75
    • /
    • 2005
  • Alignment of 2D-gel images of biological samples can visualize the difference of expression profiles and also inform us candidates of protein spots to be further analyzed. However, comparison of two proteome images between the case and control does not always successfully identify differentially expressed proteins because of sample-to-sample variation, poor reproducibility of 2D-gel electrophoresis and inconsistent electrophoresis conditions. Multiple alignment of 2D-gel image must be preceded before visualizing the difference of expression profiles or clustering proteome images. Thus, a software for the alignment of multiple 2D-Gel images and their clustering was developed by applying various algorithms and statistical methods. Microsoft Visual C++ was used to implement the algorithms in this work. Multiresoultion-multilevel algorithm was found out to be suitable for fast alignment and for largely distorted images. Clustering of 10 different proteome images of Fetal Alcohol Syndrome, was carried out by implementing a k-means algorithm and it gave a phylogenetic tree of proteomic distance map of the samples. However, the phylogenetic tree does not discriminate the case and control. The whole image clustering shows that the proteomic distance is more dependent to age and sex.

An Image forgery protection for real-time vehicle black box using PingPong-256MAC (PingPong-256MAC을 이용한 차량용 블랙박스 실시간 영상 위변조 방지 기술)

  • Kim, HyunHo;Kim, Min-Kyu;Lee, HoonJae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.241-244
    • /
    • 2018
  • Domestic vehicle registration is continuously increasing every year, traffic accidents are also increasing by an increase in the number of vehicles. In the event of a traffic accident, the perpetrator and the victim should be judged and handled appropriately. When judging the accident situation, the black box is what evidence can be except for witness who is at the accident scene. The black box becomes an essential role in order to prevent traffic accidents. However, there is no way to prove integrity by evidence corruption, fabrication and etc. For this reason, we propose a method to guarantee the integrity of image through hash value generated by using PingPong 256 encryption algorithm for integrity verification in this paper.

  • PDF

Multi Point Cloud Integration based on Observation Vectors between Stereo Images (스테레오 영상 간 관측 벡터에 기반한 다중 포인트 클라우드 통합)

  • Yoon, Wansang;Kim, Han-gyeol;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.727-736
    • /
    • 2019
  • In this paper, we present how to create a point cloud for a target area using multiple unmanned aerial vehicle images and to remove the gaps and overlapping points between datasets. For this purpose, first, IBA (Incremental Bundle Adjustment) technique was applied to correct the position and attitude of UAV platform. We generate a point cloud by using MDR (Multi-Dimensional Relaxation) matching technique. Next, we register point clouds based on observation vectors between stereo images by doing this we remove gaps between point clouds which are generated from different stereo pairs. Finally, we applied an occupancy grids based integration algorithm to remove duplicated points to create an integrated point cloud. The experiments were performed using UAV images, and our experiments show that it is possible to remove gaps and duplicate points between point clouds generated from different stereo pairs.