• 제목/요약/키워드: Image-guided

Search Result 374, Processing Time 0.031 seconds

Study of concrete de-bonding assessment technique for containment liner plates in nuclear power plants using ultrasonic guided wave approach

  • Lee, Yonghee;Yun, Hyunmin;Cho, Younho
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1221-1229
    • /
    • 2022
  • In this work, the guided wave de-bonding area-detecting technique was studied for application to containment liner plates in nuclear power plant areas. To apply this technique, an appropriate Lamb wave mode, symmetric and longitudinal dominance, was verified by the frequency shifting technique. The S0 2.7 MHz mm Lamb wave mode was chosen to realize quantitative experimental results and their visualization. Results of the bulk wave, longitudinal wave mode, and comparison experiments indicate that the wave mode was able to distinguish between the de-bonded and bonded areas. Similar to the bulk wave cases, the bonded region could be distinguished from the de-bonded region using the Lamb wave approach. The Lamb wave technique results showed significant correlation to the de-bonding area. As the de-bonding area increased, the Lamb wave energy attenuation effect decreased, which was a prominent factor in the realization of quantitative tomographic visualization. The feasibility of tomographic visualization was studied via the application of Lamb waves. The reconstruction algorithm for the probabilistic inspection of damage (RAPID) technique was applied to the containment liner plate to verify and visualize the de-bonding condition. The results obtained using the tomography image indicated that the Lamb wave-based RAPID algorithm was capable of delineating debonding areas.

MR-Guided Targeted Prostate Biopsy from Radiologists' Perspective (영상의학과 의사의 시각에서 본 자기공명영상 기반 전립선 표적 생검)

  • So-Yeon Kim;Kye Jin Park
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.6
    • /
    • pp.1220-1232
    • /
    • 2023
  • The prostate cancer diagnosis has traditionally been based on a systematic biopsy method in which tissue samples are randomly obtained from the prostate 10-12 sites. However, there are concerns as the method can fail to diagnose all prostate cancers or lead to over-detection of clinically insignificant cancers. MRI-guided prostate targeted biopsy has been proposed to address these shortcomings. This method involves identifying suspicious lesions using MRI and performing targeted biopsies under ultrasound or MRI guidance. We review the methods of MRI-based targeted biopsy and discuss recent guidelines and trends in prostate cancer diagnosis.

Transvaginal Ultrasound-Guided Biopsy (경질 초음파 유도생검)

  • Su Hyeok Lim;Jung Jae Park;Chan Kyo Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.6
    • /
    • pp.1233-1243
    • /
    • 2023
  • Percutaneous ultrasound-guided biopsy is useful for the pathologic confirmation of variable body lesions to establish diagnostic and therapeutic approaches. However, deep pelvic lesions are a challenge for pathologic diagnoses because of the presence of the bowel, bladder, major vessels, and pelvic bones which make a percutaneous approach difficult and dangerous. In female, the vagina is elastic and near the pelvic internal organs. Therefore, transvaginal ultrasound may serve as an effective and safe guide for the pathologic diagnosis of pelvis lesions. This review aimed to introduce the indications for, and the method of transvaginal ultrasoundguided biopsy, and to describe the reported diagnostic accuracy and safety.

A Study on Detection of Lane and Situation of Obstacle for AGV using Vision System (비전 시스템을 이용한 AGV의 차선인식 및 장애물 위치 검출에 관한 연구)

  • 이진우;이영진;이권순
    • Journal of Korean Port Research
    • /
    • v.14 no.3
    • /
    • pp.303-312
    • /
    • 2000
  • In this paper, we describe an image processing algorithm which is able to recognize the road lane. This algorithm performs to recognize the interrelation between AGV and the other vehicle. We experimented on AGV driving test with color CCD camera which is setup on the top of vehicle and acquires the digital signal. This paper is composed of two parts. One is image preprocessing part to measure the condition of the condition of the lane and vehicle. This finds the information of lines using RGB ratio cutting algorithm, the edge detection and Hough transform. The other obtains the situation of other vehicles using the image processing and viewport. At first, 2 dimension image information derived from vision sensor is interpreted to the 3 dimension information by the angle and position of the CCD camera. Through these processes, if vehicle knows the driving conditions which are lane angle, distance error and real position of other vehicles, we should calculate the reference steering angle.

  • PDF

Fast landmark matching algorithm using moving guide-line image

  • Seo Seok-Bae;Kang Chi-Ho;Ahn Sang-Il;Choi Hae-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.208-211
    • /
    • 2004
  • Landmark matching is one of an important algorithm for navigation of satellite images. This paper proposes a fast landmark matching algorithm using a MGLI (Moving Guide-Line Image). For searching the matched point between the landmark chip and a part of image, correlation matrix is used generally, but the full-sized correlation matrix has a drawback requiring plenty of time for matching point calculation. MGLI includes thick lines for fast calculation of correlation matrix. In the MGLI, width of the thick lines should be determined by satellite position changes and navigation error range. For the fast landmark matching, the MGLI provides guided line for a landmark chip we want to match, so that the proposed method should reduce candidate areas for correlation matrix calculation. This paper will show how much time is reduced in the proposed fast landmark matching algorithm compared to general ones.

  • PDF

Morphological Variation Classification of Red Blood Cells using Neural Network Model in the Peripheral Blood Images (말초혈액영상에서 신경망 모델을 이용한 적혈구의 형태학적 변이 분류)

  • Kim, Gyeong-Su;Kim, Pan-Gu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.10
    • /
    • pp.2707-2715
    • /
    • 1999
  • Recently, there have been researches to automate processing and analysing images in the medical field using image processing technique, a fast communication network, and high performance hardware. In this paper, we propose a system to be able to analyze morphological abnormality of red-blood cells for peripheral blood image using image processing techniques. To do this, we segment red-blood cells in the blood image acquired from microscope with CCD camera and then extract UNL fourier features to classify them into 15 classes. We reduce the number of multi-variate features using PCA to construct a more efficient classifier. Our system has the best performance in recognition rate, compared with two other algorithms, LVQ3 and k-NN. So, we show that it can be applied to a pathological guided system.

  • PDF

Single Image Dehazing Based on Depth Map Estimation via Generative Adversarial Networks (생성적 대립쌍 신경망을 이용한 깊이지도 기반 연무제거)

  • Wang, Yao;Jeong, Woojin;Moon, Young Shik
    • Journal of Internet Computing and Services
    • /
    • v.19 no.5
    • /
    • pp.43-54
    • /
    • 2018
  • Images taken in haze weather are characteristic of low contrast and poor visibility. The process of reconstructing clear-weather image from a hazy image is called dehazing. The main challenge of image dehazing is to estimate the transmission map or depth map for an input hazy image. In this paper, we propose a single image dehazing method by utilizing the Generative Adversarial Network(GAN) for accurate depth map estimation. The proposed GAN model is trained to learn a nonlinear mapping between the input hazy image and corresponding depth map. With the trained model, first the depth map of the input hazy image is estimated and used to compute the transmission map. Then a guided filter is utilized to preserve the important edge information of the hazy image, thus obtaining a refined transmission map. Finally, the haze-free image is recovered via atmospheric scattering model. Although the proposed GAN model is trained on synthetic indoor images, it can be applied to real hazy images. The experimental results demonstrate that the proposed method achieves superior dehazing results against the state-of-the-art algorithms on both the real hazy images and the synthetic hazy images, in terms of quantitative performance and visual performance.

Study on the histomorphometry of guided bone regeneration using automated image analysis system (자동 영상분석 계기를 이용한 골 유도재생능력의 분석에 관한 조직계측학적 연구)

  • Kim, T.I.;Ku, Y.;Rhyu, I.C.;Chung, C.P.;Han, S.B.;Choi, S.M.;Son, S.H.
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.3
    • /
    • pp.771-778
    • /
    • 1996
  • The assessment of alveolar bone changes on dental radiographs to indicate progression of periodontal diseases or healing response to therapy is routine procedure. However, the diagnostic accuracy in detecting small alveolar bone changes is very limited. Recently, guided bone regeneration therapy is popular, but the quantification of new bone is somewhat difficult with conventional evaluation method. To quantificate the amount of new bone, various evaluating methods have been introduced including histomorphometry, radiomorphometry, biochemical analysis, X-ray probe microanalysis, scanning electron microscope backscatter method. In this study, guided bone regeneration using resorbable membrane with & without PDGF-BB is quatificated through histomorphmetry to evaluate the efficacy of histomorphometric analysis. 4 beagle dogs and 8 Sprague-Dawley rats were selected as experimental animals. In beagle dog experiment, $4{\times}4mm$ Class II defects were created in maxillary both second premolars, and biodegradable membrane containing PDGF-BB(experimental group) were covered over one defect, and same membrane without PDGF-BB(control group) were covered over the other defect. At 2 weeks, 5 weeks after surgery, each beagle dogs were sacrificed, and the tissues were treated by undecalcified fixation. In Sprague-Dawley rat experiment, 5mm round defect were created in temporal bone, the same membranes were covered on the defects. At 1 week, 2 weeks after surgery, each rats were sacrificed, and undecalcified fixation were taken. After grinding tissue specimen, we analyse them histomorphometrically using image analysis system. In beagle dog 2 weeks specimens, new bone formation area were $0.03123mm^2$ in experimental group,and $0.03012mm^2$ in control group. At 5 weeks specimens, $0.15324mm^2$ in experimental group, and $0.09123mm^2$ in control group. In Sprague-Dawley rat specimens, new bone fomation area were $0.20448mm^2$ in 1 week experimental group, $0.03604mm^2$ in 1 week control group. At 2 weeks specimens, $0.46349mm^2$ in experimental group, $0.17741mm^2$ in control group. The results indicated that histomorphometric analysis of new bone formation using image analysis system is very effective quantification method to evaluate the efficacy of treatment modalities.

  • PDF

Consideration of the Effect of Artifact during the Image Guided Radiation Therapy Using the Fiducial Marker (영상 유도 방사선치료 시 Fiducial Marker의 Artifact에 관한 연구)

  • Kim, Jong-Min;Kim, Dae-Sup;Back, Geum-Mun;Kang, Tae-Yeong;Hong, Dong-Ki;Yun, Hwa-Yong;Kwon, Kyeong-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • Purpose: The effect of artifact was analyzed, which occurs from fiducial marker during the liver Image Guided Radiation Therapy (IGRT) using the fiducial marker. Materials and Methods: The size of artifact of fixed fiducial marker and length of mobile fiducial marker locus were measured using the On-Board Imager system (OBI) and CT simulator, and 2D-2D matching and 3D-3D matching were carried out, respectively, and at this time, the coordinates transition value of couch was analyzed. Results: The measurement of fixed fiducial marker artifact size indicated CT 4.90, 8.10, 12.90, 19.70 mm and OBI 5.60, 10.60, 14.70, 29.40 mm based on the reference CT slice thickness of 1.25, 2.50, 5.00, and 10.00 mm. Meanwhile, the measurement of mobile fiducial marker locus length indicated CT 42.00, 43.10, 46.50 mm, and OBI 43.40, 46.00, 49.30 mm. The coordinates transition of 1.00, 2.00, and 8.00 mm occurred between 2D-2D matching and 3D-3D matching. Conclusion: It was confirmed that the therapy error increased during IGRT due to the influence of artifact when CT slice thickness increased. Thus, it may be desirable to acquire the image less than 2.50 mm in slice thickness when IGRT is implemented using the fiducial marker.

  • PDF

Evaluation of the Geometric Accuracy of Anatomic Landmarks as Surrogates for Intrapulmonary Tumors in Image-guided Radiotherapy

  • Li, Hong-Sheng;Kong, Ling-Ling;Zhang, Jian;Li, Bao-Sheng;Chen, Jin-Hu;Zhu, Jian;Liu, Tong-Hai;Yin, Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2393-2398
    • /
    • 2012
  • Objectives: The purpose of this study was to evaluate the geometric accuracy of thoracic anatomic landmarks as target surrogates of intrapulmonary tumors for manual rigid registration during image-guided radiotherapy (IGRT). Methods: Kilovolt cone-beam computed tomography (CBCT) images acquired during IGRT for 29 lung cancer patients with 33 tumors, including 16 central and 17 peripheral lesions, were analyzed. We selected the "vertebrae", "carina", and "large bronchi" as the candidate surrogates for central targets, and the "vertebrae", "carina", and "ribs" as the candidate surrogates for peripheral lesions. Three to six pairs of small identifiable markers were noted in the tumors for the planning CT and Day 1 CBCT. The accuracy of the candidate surrogates was evaluated by comparing the distances of the corresponding markers after manual rigid matching based on the "tumor" and a particular surrogate. Differences between the surrogates were assessed using 1-way analysis of variance and post hoc least-significant-difference tests. Results: For central targets, the residual errors increased in the following ascending order: "tumor", "bronchi", "carina", and "vertebrae"; there was a significant difference between "tumor" and "vertebrae" (p = 0.010). For peripheral diseases, the residual errors increased in the following ascending order: "tumor", "rib", "vertebrae", and "carina"; There was a significant difference between "tumor" and "carina" (p = 0.005). Conclusions: The "bronchi" and "carina" are the optimal surrogates for central lung targets, while "rib" and "vertebrae" are the optimal surrogates for peripheral lung targets for manual matching of online and planned tumors.