• Title/Summary/Keyword: Image-development

Search Result 6,191, Processing Time 0.032 seconds

An Empirical Study on the Specialization Policy of Tourism Resources through the Brand Strategy of Traditional Markets - A Case on Anyang Central Market -

  • Choi, Rack-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.233-240
    • /
    • 2022
  • In this paper, we propose a marketing strategy for traditional markets that lays the foundation for regional economic development by developing traditional markets as regionally specialized tourism resources. This study conducted a survey of local residents and tourists, who are market users, and conducted a factor analysis to establish a market brand strategy using SPSS 25 and a reliability analysis to verify internal consistency. In addition, correlation analysis was performed to verify the significance to confirm the relevance. The analysis results of Anyang Central Market brand tourism products for traditional market marketing strategies are as follows. First, it is necessary to establish a brand identity that activates brand elements and brand criteria and brand positioning. Second, it is required to improve brand awareness, which can elicit brand awareness and brand information and brand memory. Third, it is necessary to improve the brand image that can increase brand association and brand loyalty. Fourth, it is necessary to make efforts to improve brand equity, which can improve brand value, brand concern, and brand life. By developing and proposing marketing policies for traditional markets by utilizing market brand strategies, it can be expected to revitalize traditional markets and local economies as specialized local tourism resources.

Development of Deep Learning Structure to Secure Visibility of Outdoor LED Display Board According to Weather Change (날씨 변화에 따른 실외 LED 전광판의 시인성 확보를 위한 딥러닝 구조 개발)

  • Sun-Gu Lee;Tae-Yoon Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.340-344
    • /
    • 2023
  • In this paper, we propose a study on the development of deep learning structure to secure visibility of outdoor LED display board according to weather change. The proposed technique secures the visibility of the outdoor LED display board by automatically adjusting the LED luminance according to the weather change using deep learning using an imaging device. In order to automatically adjust the LED luminance according to weather changes, a deep learning model that can classify the weather is created by learning it using a convolutional network after first going through a preprocessing process for the flattened background part image data. The applied deep learning network reduces the difference between the input value and the output value using the Residual learning function, inducing learning while taking the characteristics of the initial input value. Next, by using a controller that recognizes the weather and adjusts the luminance of the outdoor LED display board according to the weather change, the luminance is changed so that the luminance increases when the surrounding environment becomes bright, so that it can be seen clearly. In addition, when the surrounding environment becomes dark, the visibility is reduced due to scattering of light, so the brightness of the electronic display board is lowered so that it can be seen clearly. By applying the method proposed in this paper, the result of the certified measurement test of the luminance measurement according to the weather change of the LED sign board confirmed that the visibility of the outdoor LED sign board was secured according to the weather change.

Development of Deep Learning Structure for Defective Pixel Detection of Next-Generation Smart LED Display Board using Imaging Device (영상장치를 이용한 차세대 스마트 LED 전광판의 불량픽셀 검출을 위한 딥러닝 구조 개발)

  • Sun-Gu Lee;Tae-Yoon Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.345-349
    • /
    • 2023
  • In this paper, we propose a study on the development of deep learning structure for defective pixel detection of next-generation smart LED display board using imaging device. In this research, a technique utilizing imaging devices and deep learning is introduced to automatically detect defects in outdoor LED billboards. Through this approach, the effective management of LED billboards and the resolution of various errors and issues are aimed. The research process consists of three stages. Firstly, the planarized image data of the billboard is processed through calibration to completely remove the background and undergo necessary preprocessing to generate a training dataset. Secondly, the generated dataset is employed to train an object recognition network. This network is composed of a Backbone and a Head. The Backbone employs CSP-Darknet to extract feature maps, while the Head utilizes extracted feature maps as the basis for object detection. Throughout this process, the network is adjusted to align the Confidence score and Intersection over Union (IoU) error, sustaining continuous learning. In the third stage, the created model is employed to automatically detect defective pixels on actual outdoor LED billboards. The proposed method, applied in this paper, yielded results from accredited measurement experiments that achieved 100% detection of defective pixels on real LED billboards. This confirms the improved efficiency in managing and maintaining LED billboards. Such research findings are anticipated to bring about a revolutionary advancement in the management of LED billboards.

A Study on the Design Improvement of Street Facilities in Jeollabuk-do Province (전라북도 가로시설물의 디자인 제고를 위한 연구)

  • Kim, Sang Hyun;Kim, Hong Bae
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.25 no.2
    • /
    • pp.1-8
    • /
    • 2023
  • This study reveals the absence of standard design guidelines by region through investigation and analysis centered on public design cases by region in Jeollabuk-do and design elements that can reflect the integration, identity, and diversity of public design in each region by five regions. Through this, the following conclusions could be obtained. First, to improve the quality of street facilities in Jeollabuk-do, the design elements (design motif, color, pattern) applicable to the standard design were analyzed by dividing them into five regions. As a design motif, it was possible to extract patterns containing straight lines, sophistication, dignity, and smartness. In the Northeast region, it is comfortable with the motif of the mountain ridge reflecting geographical characteristics, and it can be extracted elements that contain warm and natural colors. In the southeastern region, patterns that reflect design elements were extracted by applying safe, lively, and peaceful colors with the design motif of curves that blend nature and agriculture. In the southwestern region, design pattern elements that highlight nature, history, and culture were extracted with various cultural assets and natural greenery as motifs. Lastly, in the Saemangeum region, the ocean flow and greenery could be used as a design motif to reflect a positive, clear, future-oriented image in the design spot zones by region. Second, based on the standard design elements (design motive, color, pattern) by region extracted for the standard design development of street facilities in each region in Jeollabuk-do, an integrated zone(Form, structure, material, color, functional element) to which regional design guidelines can be applied. Third, an integrated zone (form, structure, material, color, functional elements) was composed. In addition, design spot zones (patterns and colors in city and county units) that can contain the diversity and identity of each region were designated. By designating design spot zones (patterns and colors in city and county units) that can contain the diversity and identity of each region, standard design development plans (integrated pillars, jaywalking prevention fences, roundabouts (urban type, rural type), street trees) Eight standard designs, including protective covers, street planters, flat benches, light benches, visual media for user guidance, and parking zones for personal mobile devices) were presented.

A Study on Implementation of Indoor Positioning Simulator through Indoor Positioning API Development (실내측위 API개발을 통한 실내측위 시뮬레이터 구현에 관한 연구)

  • Shin, Chang Soo;Kim, Sung Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.873-881
    • /
    • 2023
  • The evolution of civil engineering technology, exemplified by recent milestones like the completion of the Gangnam Global Business Center (GBC), has fostered the construction of expansive civil and architectural structures both above and below the earth's surface. This surge in construction necessitates a commensurate advancement in research and technology pertaining to safety protocols applicable to these vast edifices. Such protocols encompass a spectrum of concerns, ranging from the preemptive mitigation of accidents to the effective management of exigencies such as fires. As the trajectory of construction endeavors continues unabated, encompassing both subterranean and elevated domains, a concomitant imperative emerges to refine the methodologies underpinning precise indoor positioning. To address this need, an innovative web-based simulator has been devised to emulate indoor positioning scenarios for rigorous testing. This research further entails the development of an indoor positioning data Application Programming Interface (API) fortified by Geographic Information System (GIS) spatial operation techniques. This API is anchored in the construction of intricate test data, centered on the spatial layout of building 13 at the Electronics and Telecommunications Research Institute (ETRI). Consequently, the study renders feasible the expeditious provisioning of diverse signal-based and image-based spatial information, pivotal for enhancing the navigational acumen of mobile devices. Path delineation, cellular signal mapping, landmark identification, and ancillary navigational aids are among the manifold datasets promptly furnished by the indoor positioning data API. In summation, this study engenders a crucial leap towards the fortification of safety protocols and navigational precision within the expansive confines of modern architectural wonders.

A Study on the Implement of AI-based Integrated Smart Fire Safety (ISFS) System in Public Facility

  • Myung Sik Lee;Pill Sun Seo
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.3
    • /
    • pp.225-234
    • /
    • 2023
  • Even at this point in the era of digital transformation, we are still facing many problems in the safety sector that cannot prevent the occurrence or spread of human casualties. When you are in an unexpected emergency, it is often difficult to respond only with human physical ability. Human casualties continue to occur at construction sites, manufacturing plants, and multi-use facilities used by many people in everyday life. If you encounter a situation where normal judgment is impossible in the event of an emergency at a life site where there are still many safety blind spots, it is difficult to cope with the existing manual guidance method. New variable guidance technology, which combines artificial intelligence and digital twin, can make it possible to prevent casualties by processing large amounts of data needed to derive appropriate countermeasures in real time beyond identifying what safety accidents occurred in unexpected crisis situations. When a simple control method that divides and monitors several CCTVs is digitally converted and combined with artificial intelligence and 3D digital twin control technology, intelligence augmentation (IA) effect can be achieved that strengthens the safety decision-making ability required in real time. With the enforcement of the Serious Disaster Enterprise Punishment Act, the importance of distributing a smart location guidance system that urgently solves the decision-making delay that occurs in safety accidents at various industrial sites and strengthens the real-time decision-making ability of field workers and managers is highlighted. The smart location guidance system that combines artificial intelligence and digital twin consists of AIoT HW equipment, wireless communication NW equipment, and intelligent SW platform. The intelligent SW platform consists of Builder that supports digital twin modeling, Watch that meets real-time control based on synchronization between real objects and digital twin models, and Simulator that supports the development and verification of various safety management scenarios using intelligent agents. The smart location guidance system provides on-site monitoring using IoT equipment, CCTV-linked intelligent image analysis, intelligent operating procedures that support workflow modeling to immediately reflect the needs of the site, situational location guidance, and digital twin virtual fencing access control technology. This paper examines the limitations of traditional fixed passive guidance methods, analyzes global technology development trends to overcome them, identifies the digital transformation properties required to switch to intelligent variable smart location guidance methods, explains the characteristics and components of AI-based public facility smart fire safety integrated system (ISFS).

Development and mathematical performance analysis of custom GPTs-Based chatbots (GPTs 기반 문제해결 맞춤형 챗봇 제작 및 수학적 성능 분석)

  • Kwon, Misun
    • Education of Primary School Mathematics
    • /
    • v.27 no.3
    • /
    • pp.303-320
    • /
    • 2024
  • This study presents the development and performance evaluation of a custom GPT-based chatbot tailored to provide solutions following Polya's problem-solving stages. A beta version of the chatbot was initially deployed to assess its mathematical capabilities, followed by iterative error identification and correction, leading to the final version. The completed chatbot demonstrated an accuracy rate of approximately 89.0%, correctly solving an average of 57.8 out of 65 image-based problems from a 6th-grade elementary mathematics textbook, reflecting a 4 percentage point improvement over the beta version. For a subset of 50 problems, where images were not critical for problem resolution, the chatbot achieved an accuracy rate of approximately 91.0%, solving an average of 45.5 problems correctly. Predominant errors included problem recognition issues, particularly with complex or poorly recognizable images, along with concept confusion and comprehension errors. The custom chatbot exhibited superior mathematical performance compared to the general-purpose ChatGPT. Additionally, its solution process can be adapted to various grade levels, facilitating personalized student instruction. The ease of chatbot creation and customization underscores its potential for diverse applications in mathematics education, such as individualized teacher support and personalized student guidance.

Development of a Deep Learning Network for Quality Inspection in a Multi-Camera Inline Inspection System for Pharmaceutical Containers (의약 용기의 다중 카메라 인라인 검사 시스템에서의 품질 검사를 위한 딥러닝 네트워크 개발)

  • Tae-Yoon Lee;Seok-Moon Yoon;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.474-478
    • /
    • 2024
  • In this paper, we proposes a deep learning network for quality inspection in a multi-camera inline inspection system for pharmaceutical containers. The proposed deep learning network is specifically designed for pharmaceutical containers by using data produced in real manufacturing environments, leading to more accurate quality inspection. Additionally, the use of an inline-capable deep learning network allows for an increase in inspection speed. The development of the deep learning network for quality inspection in the multi-camera inline inspection system consists of three steps. First, a dataset of approximately 10,000 images is constructed from the production site using one line camera for foreign substance inspection and three area cameras for dimensional inspection. Second, the pharmaceutical container data is preprocessed by designating regions of interest (ROI) in areas where defects are likely to occur, tailored for foreign substance and dimensional inspections. Third, the preprocessed data is used to train the deep learning network. The network improves inference speed by reducing the number of channels and eliminating the use of linear layers, while accuracy is enhanced by applying PReLU and residual learning. This results in the creation of four deep learning modules tailored to the dataset built from the four cameras. The performance of the proposed deep learning network for quality inspection in the multi-camera inline inspection system for pharmaceutical containers was evaluated through experiments conducted by a certified testing agency. The results show that the deep learning modules achieved a classification accuracy of 99.4%, exceeding the world-class level of 95%, and an average classification speed of 0.947 seconds, which is superior to the world-class level of 1 second. Therefore, the effectiveness of the proposed deep learning network for quality inspection in a multi-camera inline inspection system for pharmaceutical containers has been demonstrated.

A Comparison of Body Image and Dietary Behavior in Middle and High School girls in Gyeongbuk Area (경북 일부지역 여자 중·고등학생의 체형인식도 및 식생활 행동 비교)

  • Kim, Hye-Jin;Lee, Kyung-A
    • Korean journal of food and cookery science
    • /
    • v.31 no.4
    • /
    • pp.497-504
    • /
    • 2015
  • The purpose of this study was to compare body image and dietary behavior in middle and high school girls in the Gyeongbuk area in September, 2014. Data were collected from a total of 194 middle school and 170 high school girls through a self-reported questionnaire. A total of 364 completed questionnaires were collected and used for the final analysis. The mean body mass index (BMI) of respondents was normal at 21.29. Generally, high school girls had greater height, weight and BMI than middle school girls. Height (p<0.001) and weight (p<0.001) were significantly different, while BMI was not. The ratio of students who perceived their body size as 'Fat' was significantly (p<0.05) higher in high school (43.9%) than in middle school (31.6%). The ratio of dissatisfaction with their current body image was significantly (p<0.001) higher in high school girls (64.1%) than in middle school girls (44.0%). Among respondents who perceived their body size as 'Fat', many high school girls actually (53.3%) had normal or low body weight and this was significantly (p<0.001) higher than in middle school girls (39.3%). Experience with weight control was higher in high school girls (67.3%) than in middle school girls (60.6%), but there was no significant difference. Regarding the weight control methods, respondents selected 'combination diet and exercise' (22.2%), 'diet control' (20.9%), 'exercise' (18.7%), and 'reduce snacks and midnight snack' (17.4%). 15 items under obesity-related dietary behavior were measured with 5-point scales and lower scores indicated obesity diet behavior. The mean score for all respondents was 3.19/5.00, and high school girls (3.06) scored significantly (p<0.001) higher than middle school girls (3.33). Our study suggests that the development of effective nutrition and health education for diet control is crucial for adolescent girls. This study will enable educators to plan more effective strategies to improve the dietary knowledge of adolescent girls.

The Audience Behavior-based Emotion Prediction Model for Personalized Service (고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형)

  • Ryoo, Eun Chung;Ahn, Hyunchul;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.73-85
    • /
    • 2013
  • Nowadays, in today's information society, the importance of the knowledge service using the information to creative value is getting higher day by day. In addition, depending on the development of IT technology, it is ease to collect and use information. Also, many companies actively use customer information to marketing in a variety of industries. Into the 21st century, companies have been actively using the culture arts to manage corporate image and marketing closely linked to their commercial interests. But, it is difficult that companies attract or maintain consumer's interest through their technology. For that reason, it is trend to perform cultural activities for tool of differentiation over many firms. Many firms used the customer's experience to new marketing strategy in order to effectively respond to competitive market. Accordingly, it is emerging rapidly that the necessity of personalized service to provide a new experience for people based on the personal profile information that contains the characteristics of the individual. Like this, personalized service using customer's individual profile information such as language, symbols, behavior, and emotions is very important today. Through this, we will be able to judge interaction between people and content and to maximize customer's experience and satisfaction. There are various relative works provide customer-centered service. Specially, emotion recognition research is emerging recently. Existing researches experienced emotion recognition using mostly bio-signal. Most of researches are voice and face studies that have great emotional changes. However, there are several difficulties to predict people's emotion caused by limitation of equipment and service environments. So, in this paper, we develop emotion prediction model based on vision-based interface to overcome existing limitations. Emotion recognition research based on people's gesture and posture has been processed by several researchers. This paper developed a model that recognizes people's emotional states through body gesture and posture using difference image method. And we found optimization validation model for four kinds of emotions' prediction. A proposed model purposed to automatically determine and predict 4 human emotions (Sadness, Surprise, Joy, and Disgust). To build up the model, event booth was installed in the KOCCA's lobby and we provided some proper stimulative movie to collect their body gesture and posture as the change of emotions. And then, we extracted body movements using difference image method. And we revised people data to build proposed model through neural network. The proposed model for emotion prediction used 3 type time-frame sets (20 frames, 30 frames, and 40 frames). And then, we adopted the model which has best performance compared with other models.' Before build three kinds of models, the entire 97 data set were divided into three data sets of learning, test, and validation set. The proposed model for emotion prediction was constructed using artificial neural network. In this paper, we used the back-propagation algorithm as a learning method, and set learning rate to 10%, momentum rate to 10%. The sigmoid function was used as the transform function. And we designed a three-layer perceptron neural network with one hidden layer and four output nodes. Based on the test data set, the learning for this research model was stopped when it reaches 50000 after reaching the minimum error in order to explore the point of learning. We finally processed each model's accuracy and found best model to predict each emotions. The result showed prediction accuracy 100% from sadness, and 96% from joy prediction in 20 frames set model. And 88% from surprise, and 98% from disgust in 30 frames set model. The findings of our research are expected to be useful to provide effective algorithm for personalized service in various industries such as advertisement, exhibition, performance, etc.