• Title/Summary/Keyword: Image-based positioning

Search Result 219, Processing Time 0.025 seconds

A New Technique for Improved Positioning Accuracy Employing Gaussian Filtering in Zigbee-based Sensor Networks (지그비 기반의 센서 네트워크에서 Gaussian Filtering 기법을 적용한 위치 추적 향상 기법)

  • Hur, Byoung-Hoe;Kim, Jeong-Gon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12A
    • /
    • pp.982-990
    • /
    • 2009
  • The IEEE 802.15.4 wireless sensor network is composed of the unique sensor devices to monitor and collect physical or environmental conditions. The interests in a positioning technology, which is one of the environment monitoring technologies, are gradually increased according to the development of the sensor technology and IT infrastructure. Generally, it is difficult for the positioning system using RSSI (Received Signal Strength Indication) based implementation to get accurate position because of obstacles, RF wave's delay and multipath. Therefore, in this paper, we investigate the improved positioning technologies for RSSI-based positioning system. This paper also proposes the enhanced scheme to improve the accuracy of positioning system by applying the Gaussian Filter algorithm, which is widely used for enhancing the performance of image processing system. For the implementation of proposed scheme, we firstly make a look-up tables, which represent the distance between target node and master node and corresponding RSSI value of each target node which are recorded as an average value after investigating the characteristics of attenuation of transmitted signal By applying the pre-determined look-up tables and Gaussian Filtering in the proposed scheme, we analyzed the positioning performance and compared with other conventional RSSI-based positioning algorithms.

A Path tracking algorithm and a VRML image overlay method (VRML과 영상오버레이를 이용한 로봇의 경로추적)

  • Sohn, Eun-Ho;Zhang, Yuanliang;Kim, Young-Chul;Chong, Kil-To
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.907-908
    • /
    • 2006
  • We describe a method for localizing a mobile robot in its working environment using a vision system and Virtual Reality Modeling Language (VRML). The robot identifies landmarks in the environment, using image processing and neural network pattern matching techniques, and then its performs self-positioning with a vision system based on a well-known localization algorithm. After the self-positioning procedure, the 2-D scene of the vision is overlaid with the VRML scene. This paper describes how to realize the self-positioning, and shows the overlap between the 2-D and VRML scenes. The method successfully defines a robot's path.

  • PDF

Global Positioning of a Mobile Robot based on Color Omnidirectional Image Understanding (컬러 전방향 영상 이해에 기반한 이동 로봇의 위치 추정)

  • Kim, Tae-Gyun;Lee, Yeong-Jin;Jeong, Myeong-Jin
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.6
    • /
    • pp.307-315
    • /
    • 2000
  • For the autonomy of a mobile robot it is first needed to know its position and orientation. Various methods of estimating the position of a robot have been developed. However, it is still difficult to localize the robot without any initial position or orientation. In this paper we present the method how to make the colored map and how to calculate the position and direction of a robot using the angle data of an omnidirectional image. The wall of the map is rendered with the corresponding color images and the color histograms of images and the coordinates of feature points are stored in the map. Then a mobile robot gets the color omnidirectional image at arbitrary position and orientation, segments it and recognizes objects by multiple color indexing. Using the information of recognized objects robot can have enough feature points and localize itself.

  • PDF

Obstacle Detection and Self-Localization without Camera Calibration using Projective Invariants (투사영상 불변량을 이용한 장애물 검지 및 자기 위치 인식)

  • 노경식;이왕헌;이준웅;권인소
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.228-236
    • /
    • 1999
  • In this paper, we propose visual-based self-localization and obstacle detection algorithms for indoor mobile robots. The algorithms do not require calibration, and can be worked with only single image by using the projective invariant relationship between natural landmarks. We predefine a risk zone without obstacles for a robot, and update the image of the risk zone, which will be used to detect obstacles inside the zone by comparing the averaging image with the current image of a new risk zone. The positions of the robot and the obstacles are determined by relative positioning. The method does not require the prior information for positioning robot. The robustness and feasibility of our algorithms have been demonstrated through experiments in hallway environments.

  • PDF

The Analysis of the Image of Kongju City Based on Citizen - Image Positioning by Adjectives of City and Landmarks - (시민의식에 기초한 공주시 도시 이미지 분석 - 도시와 랜드마크의 형용사 이미지 포지셔닝 -)

  • Cheong Yong-Moon;Byeon Jae-Sang
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.3 s.110
    • /
    • pp.18-30
    • /
    • 2005
  • Since the 1990s, with the beginning of local autonomy, most Korean cities have tried to establish and reinforce their own identity. The Law on the Planning and the Use of National Land, which took effect in January 2003, requires major and minor cities to manage and develop a city image and a marketing strategy to reflect their current condition. However, many cities continue to experience confusion in implementing urban landscape planning because no efficient and systematic method has been provided for the analysis of a city's image. The absence of systematic analysis methods makes it difficult not only to assess the current condition of a city accurately but also to choose an appropriate policy for the given city. Consequently, many cities suffer excessive trials and errors in implementing the correct policies for their city. The purpose of this study was to analyze the image: of Kongju, which has many historical properties. For this purpose, adjective questionnaires and multi-dimensional scaling (MDS) were made use of in order to assess the city image. The results of this study can be summarized as follows: 1. There are five properties that serve as landmarts lie symbolize Kongju: Muryeong royal tomb, Castle Kong, Mt. Gyeoiryong, Forest Museum, and Kongju National Museum. 2. Based on the citizen survey regarding the city type, Kongju is seen as a historical and an educational city. 3. Based on the image positioning (image spatial plot), Kongju is described as an old and familiar city. There we, however, no landmarks which are in accord with the image of Kongju. It is difficult to establish and reinforce the image of a city with a single element like a landmark However, with steady follow-up research, this study may serve as a systematic and logical model to improve the urban landscape and image.

Performance Analysis of Vision-based Positioning Assistance Algorithm (비전 기반 측위 보조 알고리즘의 성능 분석)

  • Park, Jong Soo;Lee, Yong;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.101-108
    • /
    • 2019
  • Due to recent improvements in computer processing speed and image processing technology, researches are being actively carried out to combine information from camera with existing GNSS (Global Navigation Satellite System) and dead reckoning. In this study, developed a vision-based positioning assistant algorithm to estimate the distance to the object from stereo images. In addition, GNSS/on-board vehicle sensor/vision based positioning algorithm is developed by combining vision based positioning algorithm with existing positioning algorithm. For the performance analysis, the velocity calculated from the actual driving test was used for the navigation solution correction, simulation tests were performed to analyse the effects of velocity precision. As a result of analysis, it is confirmed that about 4% of position accuracy is improved when vision information is added compared to existing GNSS/on-board based positioning algorithm.

Indoor Position Estimation Using Stereo Image Sensor and LEDs (스테레오 이미지 센서와 LED 조명을 이용한 실내 측위)

  • Moon, Myoung-Geun;Choi, Su-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.11
    • /
    • pp.755-762
    • /
    • 2014
  • In recent year, along with the rapid development of LED technology, many applications using LEDs with Visible Light Communication(VLC) have been researched. Since it is easy to provide LOS communication environment along with cheap deployment cost, the indoor positioning system based on VLC has been actively studied. In this paper, we propose an accurate indoor positioning algorithm using a stereo image sensor and white-light LEDs with the visible light communication. Indoor white-light LEDs are located at the ceiling of a room and broadcast their position information by VLC technology. Mobile receiver with stereo image sensor receives LED position information by VLC and estimates its position and angle information. Simulation results are given to show the efficiency of proposed indoor positioning algorithm.

Position Control of Robot Manipulator based on stereo vision system (스테레오 비젼에 기반한 6축 로봇의 위치 결정에 관한 연구)

  • 조환진;박광호;기창두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.590-593
    • /
    • 2001
  • In this paper we describe the 6-axes robot's position determination using a stereo vision and an image based control method. When use a stereo vision, it need a additional time to compare with mono vision system. So to reduce the time required, we use the stereo vision not image Jacobian matrix estimation but depth estimation. Image based control is not needed the high-precision of camera calibration by using a image Jacobian. The experiment is executed as devide by two part. The first is depth estimation by stereo vision and the second is robot manipulator's positioning.

  • PDF

Vision-based Food Shape Recognition and Its Positioning for Automated Production of Custom Cakes (주문형 케이크 제작 자동화를 위한 영상 기반 식품 모양 인식 및 측위)

  • Oh, Jang-Sub;Lee, Jaesung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.10
    • /
    • pp.1280-1287
    • /
    • 2020
  • This paper proposes a vision-based food recognition method for automated production of custom cakes. A small camera module mounted on a food art printer recognizes objects' shape and estimates their center points through image processing. Through the perspective transformation, the top-view image is obtained from the original image taken at an oblique position. The line and circular hough transformations are applied to recognize square and circular shapes respectively. In addition, the center of gravity of each figure are accurately detected in units of pixels. The test results show that the shape recognition rate is more than 98.75% under 180 ~ 250 lux of light and the positioning error rate is less than 0.87% under 50 ~ 120 lux. These values sufficiently meet the needs of the corresponding market. In addition, the processing delay is also less than 0.5 seconds per frame, so the proposed algorithm is suitable for commercial purpose.

User Positioning Method Based on Image Similarity Comparison Using Single Camera (단일 카메라를 이용한 이미지 유사도 비교 기반의 사용자 위치추정)

  • Song, Jinseon;Hur, SooJung;Park, Yongwan;Choi, Jeonghee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.8
    • /
    • pp.1655-1666
    • /
    • 2015
  • In this paper, user-position estimation method is proposed by using a single camera for both indoor and outdoor environments. Conventionally, the GPS of RF-based estimation methods have been widely studied in the literature for outdoor and indoor environments, respectively. Each method is useful only for indoor or outdoor environment. In this context, this study adopts a vision-based approach which can be commonly applicable to both environments. Since the distance or position cannot be extracted from a single still image, the reference images pro-stored in image database are used to identify the current position from the single still image captured by a single camera. The reference image is tagged with its captured position. To find the reference image which is the most similar to the current image, the SURF algorithm is used for feature extraction. The outliers in extracted features are discarded by using RANSAC algorithm. The performance of the proposed method is evaluated for two buildings and their outsides for both indoor and outdoor environments, respectively.