• Title/Summary/Keyword: Image-based localization

Search Result 259, Processing Time 0.03 seconds

Probabilistic localization of the service robot by mapmatching algorithm

  • Lee, Dong-Heui;Woojin Chung;Kim, Munsang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.92.3-92
    • /
    • 2002
  • A lot of localization algorithms have been developed in order to achieve autonomous navigation. However, most of localization algorithms are restricted to certain conditions. In this paper, Monte Carlo localization scheme with a map-matching algorithm is suggested as a robust localization method for the Public Service Robot to accomplish its tasks autonomously. Monte Carlo localization can be applied to local, global and kidnapping localization problems. A range image based measure function and a geometric pattern matching measure function are applied for map matching algorithm. This map matching method can be applied to both polygonal environments and un-polygonal environments and achieves...

  • PDF

Laser Image SLAM based on Image Matching for Navigation of a Mobile Robot (이동 로봇 주행을 위한 이미지 매칭에 기반한 레이저 영상 SLAM)

  • Choi, Yun Won;Kim, Kyung Dong;Choi, Jung Won;Lee, Suk Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.177-184
    • /
    • 2013
  • This paper proposes an enhanced Simultaneous Localization and Mapping (SLAM) algorithm based on matching laser image and Extended Kalman Filter (EKF). In general, laser information is one of the most efficient data for localization of mobile robots and is more accurate than encoder data. For localization of a mobile robot, moving distance information of a robot is often obtained by encoders and distance information from the robot to landmarks is estimated by various sensors. Though encoder has high resolution, it is difficult to estimate current position of a robot precisely because of encoder error caused by slip and backlash of wheels. In this paper, the position and angle of the robot are estimated by comparing laser images obtained from laser scanner with high accuracy. In addition, Speeded Up Robust Features (SURF) is used for extracting feature points at previous laser image and current laser image by comparing feature points. As a result, the moving distance and heading angle are obtained based on information of available points. The experimental results using the proposed laser slam algorithm show effectiveness for the SLAM of robot.

Global Localization of Mobile Robots Using Omni-directional Images (전방위 영상을 이용한 이동 로봇의 전역 위치 인식)

  • Han, Woo-Sup;Min, Seung-Ki;Roh, Kyung-Shik;Yoon, Suk-June
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.517-524
    • /
    • 2007
  • This paper presents a global localization method using circular correlation of an omni-directional image. The localization of a mobile robot, especially in indoor conditions, is a key component in the development of useful service robots. Though stereo vision is widely used for localization, its performance is limited due to computational complexity and its narrow view angle. To compensate for these shortcomings, we utilize a single omni-directional camera which can capture instantaneous $360^{\circ}$ panoramic images around a robot. Nodes around a robot are extracted by the correlation coefficients of CHL (Circular Horizontal Line) between the landmark and the current captured image. After finding possible near nodes, the robot moves to the nearest node based on the correlation values and the positions of these nodes. To accelerate computation, correlation values are calculated based on Fast Fourier Transforms. Experimental results and performance in a real home environment have shown the feasibility of the method.

Point Pattern Matching Based Global Localization using Ceiling Vision (천장 조명을 이용한 점 패턴 매칭 기반의 광역적인 위치 추정)

  • Kang, Min-Tae;Sung, Chang-Hun;Roh, Hyun-Chul;Chung, Myung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1934-1935
    • /
    • 2011
  • In order for a service robot to perform several tasks, basically autonomous navigation technique such as localization, mapping, and path planning is required. The localization (estimation robot's pose) is fundamental ability for service robot to navigate autonomously. In this paper, we propose a new system for point pattern matching based visual global localization using spot lightings in ceiling. The proposed algorithm us suitable for system that demands high accuracy and fast update rate such a guide robot in the exhibition. A single camera looking upward direction (called ceiling vision system) is mounted on the head of the mobile robot and image features such as lightings are detected and tracked through the image sequence. For detecting more spot lightings, we choose wide FOV lens, and inevitably there is serious image distortion. But by applying correction calculation only for the position of spot lightings not whole image pixels, we can decrease the processing time. And then using point pattern matching and least square estimation, finally we can get the precise position and orientation of the mobile robot. Experimental results demonstrate the accuracy and update rate of the proposed algorithm in real environments.

  • PDF

Localization Using 3D-Lidar Based Road Reflectivity Map and IPM Image (3D-Lidar 기반 도로 반사도 지도와 IPM 영상을 이용한 위치추정)

  • Jung, Tae-Ki;Song, Jong-Hwa;Im, Jun-Hyuck;Lee, Byung-Hyun;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.12
    • /
    • pp.1061-1067
    • /
    • 2016
  • Position of the vehicle for driving is essential to autonomous navigation. However, there appears GPS position error due to multipath which is occurred by tall buildings in downtown area. In this paper, GPS position error is corrected by using camera sensor and highly accurate map made with 3D-Lidar. Input image through inverse perspective mapping is converted into top-view image, and it works out map matching with the map which has intensity of 3D-Lidar. Performance comparison was conducted between this method and traditional way which does map matching with input image after conversion of map to pinhole camera image. As a result, longitudinal error declined 49% and complexity declined 90%.

Omni Camera Vision-Based Localization for Mobile Robots Navigation Using Omni-Directional Images (옴니 카메라의 전방향 영상을 이용한 이동 로봇의 위치 인식 시스템)

  • Kim, Jong-Rok;Lim, Mee-Seub;Lim, Joon-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.206-210
    • /
    • 2011
  • Vision-based robot localization is challenging due to the vast amount of visual information available, requiring extensive storage and processing time. To deal with these challenges, we propose the use of features extracted from omni-directional panoramic images and present a method for localization of a mobile robot equipped with an omni-directional camera. The core of the proposed scheme may be summarized as follows : First, we utilize an omni-directional camera which can capture instantaneous $360^{\circ}$ panoramic images around a robot. Second, Nodes around the robot are extracted by the correlation coefficients of Circular Horizontal Line between the landmark and the current captured image. Third, the robot position is determined from the locations by the proposed correlation-based landmark image matching. To accelerate computations, we have assigned the node candidates using color information and the correlation values are calculated based on Fast Fourier Transforms. Experiments show that the proposed method is effective in global localization of mobile robots and robust to lighting variations.

Artificial Intelligence-Based Breast Nodule Segmentation Using Multi-Scale Images and Convolutional Network

  • Quoc Tuan Hoang;Xuan Hien Pham;Anh Vu Le;Trung Thanh Bui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.678-700
    • /
    • 2023
  • Diagnosing breast diseases using ultrasound (US) images remains challenging because it is time-consuming and requires expert radiologist knowledge. As a result, the diagnostic performance is significantly biased. To assist radiologists in this process, computer-aided diagnosis (CAD) systems have been developed and used in practice. This type of system is used not only to assist radiologists in examining breast ultrasound images (BUS) but also to ensure the effectiveness of the diagnostic process. In this study, we propose a new approach for breast lesion localization and segmentation using a multi-scale pyramid of the ultrasound image of a breast organ and a convolutional semantic segmentation network. Unlike previous studies that used only a deep detection/segmentation neural network on a single breast ultrasound image, we propose to use multiple images generated from an input image at different scales for the localization and segmentation process. By combining the localization/segmentation results obtained from the input image at different scales, the system performance was enhanced compared with that of the previous studies. The experimental results with two public datasets confirmed the effectiveness of the proposed approach by producing superior localization/segmentation results compared with those obtained in previous studies.

Efficient Text Localization using MLP-based Texture Classification (신경망 기반의 텍스춰 분석을 이용한 효율적인 문자 추출)

  • Jung, Kee-Chul;Kim, Kwang-In;Han, Jung-Hyun
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.3
    • /
    • pp.180-191
    • /
    • 2002
  • We present a new text localization method in images using a multi-layer perceptron(MLP) and a multiple continuously adaptive mean shift (MultiCAMShift) algorithm. An automatically constructed MLP-based texture classifier generates a text probability image for various types of images without an explicit feature extraction. The MultiCAMShift algorithm, which operates on the text probability Image produced by an MLP, can place bounding boxes efficiently without analyzing the texture properties of an entire image.

Eye Localization based on Multi-Scale Gabor Feature Vector Model (다중 스케일 가버 특징 벡터 모델 기반 눈좌표 검출)

  • Kim, Sang-Hoon;Jung, Sou-Hwan;Oh, Du-Sik;Kim, Jae-Min;Cho, Seong-Won;Chung, Sun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.48-57
    • /
    • 2007
  • Eye localization is necessary for face recognition and related application areas. Most of eye localization algorithms reported thus far still need to be improved about precision and computational time for successful applications. In this paper, we propose an improved eye localization method based on multi-scale Gator feature vector models. The proposed method first tries to locate eyes in the downscaled face image by utilizing Gabor Jet similarity between Gabor feature vector at an initial eye coordinates and the eye model bunch of the corresponding scale. The proposed method finally locates eyes in the original input face image after it processes in the same way recursively in each scaled face image by using the eye coordinates localized in the downscaled image as initial eye coordinates. Experiments verify that our proposed method improves the precision rate without causing much computational overhead compared with other eye localization methods reported in the previous researches.

A Study on Fisheye Lens based Features on the Ceiling for Self-Localization (실내 환경에서 자기위치 인식을 위한 어안렌즈 기반의 천장의 특징점 모델 연구)

  • Choi, Chul-Hee;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.442-448
    • /
    • 2011
  • There are many research results about a self-localization technique of mobile robot. In this paper we present a self-localization technique based on the features of ceiling vision using a fisheye lens. The features obtained by SIFT(Scale Invariant Feature Transform) can be used to be matched between the previous image and the current image and then its optimal function is derived. The fisheye lens causes some distortion on its images naturally. So it must be calibrated by some algorithm. We here propose some methods for calibration of distorted images and design of a geometric fitness model. The proposed method is applied to laboratory and aile environment. We show its feasibility at some indoor environment.