• Title/Summary/Keyword: Image technique

Search Result 5,858, Processing Time 0.041 seconds

Reversible Data Hiding Technique using Encryption Technique and Spatial Encryption Technique (암호화 기법 및 공간적인 암호화 기법을 사용한 가역 데이터 은닉기법)

  • Jung, Soo-Mok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.632-639
    • /
    • 2021
  • In this paper, we proposed a reversible data hiding technique that greatly enhances the security of confidential data by encrypting confidential data and then spatially encrypting the encrypted confidential data and hiding it in the cover image. When a result image is generated by hiding the encrypted confidential data in the cover image using a spatial encryption technique, the quality of the result image is very good, and the original cover image and the result image cannot be visually distinguished. Since the encrypted confidential data is spatially encrypted and concealed, it is not possible to know where the encrypted confidential data is concealed in the result image, and the encrypted confidential data cannot be extracted from the result image. Even if the encrypted confidential data is extracted, the original confidential data is not known because the confidential data is encrypted. Therefore, if confidential data is concealed in images using the proposed technique, the security of confidential data is greatly improved. The proposed technique can be effectively used in medical and military applications.

Study on the Streamline Nose Approach Method Using the Image Implementation Technique (형상구현기법을 응용한 전두부 이미지 도출 방법에 관한 연구)

  • Seok, Jae-Heuck;Han, Jung-Wan
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.883-891
    • /
    • 2008
  • The design shows the high-technology of the High Speed Train and its renovated services which is still to be solved. This research presents the process held in approaching the design of the streamline nose using the ‘Image Implementation Technique’. The image that has been brought out through the ‘Image Implementation Technique’ and applied to 'Idea-Creation' and 'Idea-Embodiment' is in order to embody the identity of the nose. We have drawn design and form elements through scientific and analytic approach, bringing up the image of the nose.

  • PDF

A Trade-off Image Fusion Technique Using Fast Intensity-Hue-Saturation Transform (Fast IHS 변환을 이용한 trade-off 영상 융합기법)

  • Kim, Yong-Hyun;Kim, Youn-Soo
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.26-32
    • /
    • 2009
  • In the satellite image fusion, the most important point is to preserve both the spatial detail of panchromatic(PAN) image and the spectral information of multispectral(MS) image. Among various image fusion techniques, fusion technique using Intensity-Hue-Saturation(IHS) transform is widely used and it has advantage that computation is very simple. In this study, a fusion technique using fast IHS transform and trade-off parameter $\alpha^i$ proposed. Proposed fusion technique permits customization of the trade-off between the spectral information and spatial detail quality of the fused image through the evaluation of two quality indices: a spectral index(the spectral ERGAS) and a spatial one(the spatial ERGAS). Based on the result of experiment using IKONOS image, we confirmed the proposed fusion technique was more effective in preserving spatial detail and spectral information than existing fusion techniques using fast IHS transform.

  • PDF

Fusion Techniques Comparison of GeoEye-1 Imagery

  • Kim, Yong-Hyun;Kim, Yong-Il;Kim, Youn-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.6
    • /
    • pp.517-529
    • /
    • 2009
  • Many satellite image fusion techniques have been developed in order to produce a high resolution multispectral (MS) image by combining a high resolution panchromatic (PAN) image and a low resolution MS image. Heretofore, most high resolution image fusion techniques have used IKONOS and QuickBird images. Recently, GeoEye-1, offering the highest resolution of any commercial imaging system, was launched. In this study, we have experimented with GeoEye-1 images in order to evaluate which fusion algorithms are suitable for these images. This paper presents compares and evaluates the efficiency of five image fusion techniques, the $\grave{a}$ trous algorithm based additive wavelet transformation (AWT) fusion techniques, the Principal Component analysis (PCA) fusion technique, Gram-Schmidt (GS) spectral sharpening, Pansharp, and the Smoothing Filter based Intensity Modulation (SFIM) fusion technique, for the fusion of a GeoEye-1 image. The results of the experiment show that the AWT fusion techniques maintain more spatial detail of the PAN image and spectral information of the MS image than other image fusion techniques. Also, the Pansharp technique maintains information of the original PAN and MS images as well as the AWT fusion technique.

Development of Dark Field image Processing Technique for the Investigation of Nanostructures

  • Jeon, Jongchul;Kim, Kyou-Hyun
    • Journal of Powder Materials
    • /
    • v.24 no.4
    • /
    • pp.285-291
    • /
    • 2017
  • We propose a custom analysis technique for the dark field (DF) image based on transmission electron microscopy (TEM). The custom analysis technique is developed based on the $DigitalMicrograph^{(R)}$ (DM) script language embedded in the Gatan digital microscopy software, which is used as the operational software for most TEM instruments. The developed software automatically scans an electron beam across a TEM sample and records a series of electron diffraction patterns. The recorded electron diffraction patterns provide DF and ADF images based on digital image processing. An experimental electron diffraction pattern is recorded from a IrMn polycrystal consisting of fine nanograins in order to test the proposed software. We demonstrate that the developed image processing technique well resolves nanograins of ~ 5 nm in diameter.

Developemet of noncontact velocity tracking algorithm for 3-dimensional high speed flows using digital image processing technique (디지털 화상처리를 이용한 유동장의 비접촉 3차원 고속류 계측법의 개발)

  • 도덕희
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.259-269
    • /
    • 1999
  • A new algorithm for measuring 3-D velocity components of high speed flows were developed using a digital image processing technique. The measuring system consists of three CCD cameras an optical instrument called AOM a digital image grabber and a host computer. The images of mov-ing particles arranged spatially on a rotation plate are taken by two or three CCD cameras and are recorderd onto the image grabber or a video tape recoder. The three-dimensionl velocity com-ponents of the particles are automatically obtained by the developed algorithm In order to verify the validity of this technique three-dimensional velocity data sets obtained from a computer simu-lation of a backward facing step flow were used as test data for the algorithm. an uncertainty analysis associated with the present algorithm is systematically evaluated, The present technique is proved to be used as a tookl for the measurement of unsteady three-dimensional fluid flows.

  • PDF

New Unsupervised Classification Technique for Polarimetric SAR Images

  • Oh, Yi-Sok;Lee, Kyung-Yup;Jang, Ge-Ba
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.255-261
    • /
    • 2009
  • A new polarimetric SAR image classification technique based on the degree of polarization (DoP) and the co-polarized phase-difference (CPD) is presented in this paper. Since the DoP and the CPD of a scattered wave provide information on the randomness of the scattering and the type of scattering mechanisms, at first, the statistics of the DoP and CPD are examined with measured polarimetric SAR image data. Then, a DoP-CPD diagram with appropriate boundaries between six different classes is developed based on the SAR image. The classification technique is verified using the JPL AirSAR and ALOS PALSAR polarimetric data. The technique may have capability to classify an SAR image into six major classes; a bare surface, a village, a crown-layer short vegetation canopy, a trunk-layer short vegetation canopy, a crown-layer forest, and a trunk-dominated forest.

Automatic Registration between EO and IR Images of KOMPSAT-3A Using Block-based Image Matching

  • Kang, Hyungseok
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.4
    • /
    • pp.545-555
    • /
    • 2020
  • This paper focuses on automatic image registration between EO (Electro-Optical) and IR (InfraRed) satellite images with different spectral properties using block-based approach and simple preprocessing technique to enhance the performance of feature matching. If unpreprocessed EO and IR images from Kompsat-3A satellite were applied to local feature matching algorithms(Scale Invariant Feature Transform, Speed-Up Robust Feature, etc.), image registration algorithm generally failed because of few detected feature points or mismatched pairs despite of many detected feature points. In this paper, we proposed a new image registration method which improved the performance of feature matching with block-based registration process on 9-divided image and pre-processing technique based on adaptive histogram equalization. The proposed method showed better performance than without our proposed technique on visual inspection and I-RMSE. This study can be used for automatic image registration between various images acquired from different sensors.

Optical Image Hiding Technique using Real-Valued Decoding Key (실수값 복원키를 이용한 광 영상 은닉 기술)

  • Cho, Kyu-Bo;Seo, Dong-Hoan;Choi, Eun-chang
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.3
    • /
    • pp.168-173
    • /
    • 2011
  • In this paper, an optical image hiding technique using real-valued decoding key is proposed. In the embedding process, a each zero-padded original image placed in a quadrants on an input plane is multiplied by a statistically independent random phase pattern and is Fourier transformed. An encoded image is obtained by taking the real-valued data from the Fourier transformed image. And then a phase-encoded pattern, used as a hidden image and a decoding key, is generated by the use of multiple phase wrapping from the encoded images. A transmitted image is made from the linear superposition of the weighted hidden images and a cover image. In reconstruction process, the mirror reconstructed images can be obtained at two quadrants by the inverse-Fourier transform of the product of the transmitted image and the decoding key. Computer simulation and optical experiment are demonstrated in order to confirm the proposed technique.

Velocity Field Masking Technique for Coastal Engineering Experiments

  • Adibhusana, Made Narayana;Ryu, Yong-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.154-154
    • /
    • 2021
  • Since the development of Bubble Image Velocimetry (BIV) technique as the complementary technique of Particle Image Velocimetry (PIV), the application of digital imaging technique in the field of hydraulic and coastal engineering increased rapidly. BIV works very well in multi-phase flow (air-water) flows where the PIV technique doesn't. However, the velocity field obtained from BIV technique often resulted in a velocity vector on the outside of the flow (false velocity) since the Field of View (FOV) usually not only cover the air-water flow but also the area outside the flow. In this study, a simple technique of post processing velocity field was developed. This technique works based on the average of the pixel value in the interrogation area. An image of multi-phase flow of wave overtopping was obtained through physical experiment using BIV technique. The velocity calculation was performed based on the similar method in PIV. A velocity masking technique developed in this study then applied to remove the false velocity vector. Result from non-masking, manually removed and auto removed false velocity vector were presented. The masking technique show a similar result as manually removed velocity vector. This method could apply in a large number of velocity field which is could increase the velocity map post-processing time.

  • PDF