• Title/Summary/Keyword: Image synthesis

Search Result 444, Processing Time 0.028 seconds

Synthesis of FDR-SPC Resin and PIV Measurement for Frictional Drag-reduction (마찰저항 저감을 위한 고분자 수지 합성 및 PIV 유동장 계측)

  • Chung, Sungwoo;Kim, Eunyoung;Chun, Ho Hwan;Park, Hyun;Lee, Inwon
    • Journal of the Korean Society of Visualization
    • /
    • v.12 no.1
    • /
    • pp.49-53
    • /
    • 2014
  • In this study, a novel FDR-SPC is first synthesized in this study. The drag reducing functional radical such as PEGMA (Poly(ethylene) glycol methacrylate) has been utilized to participate in the synthesis process of the SPC. The types of the baseline SPC monomers, the molecular weight and the mole fraction of PEGMA were varied in the synthesis process. The resulting SPCs were coated to the substrate plates for the subsequent hydrodynamic test for skin friction measurement. In a low-Reynolds number flow measurement using PIV (Particle Image Velocimeter), a significant reduction in Reynolds stress was observed in a range of specimen, with the maximum drag reduction being 15.9% relative to the smooth surface.

Facile Synthesis of SrWO4:Eu3+ Phosphors

  • Bharat, L. Krishna;Yu, Jae Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.643-643
    • /
    • 2013
  • Recently, synthesis of low-dimensional nanostructures is gaining more importance due to their structural properties and growing potential applications. On the other hand, luminescent materials doped with rare earth ions have drawn immense attention. The commercial phosphors are based on many host materials. Among them, tungstates are being currently investigated by many research groups owing to a wide range of applications. Tungstates are formed by different metal cations (e.g., SrWO4, Na2WO4, NiWO4, Cr2WO6, and ZrW2O8) and their structure depends on the size of the metal cation. Tungstates with large bivalent cations (${\gg}0.1\;nm$) have the scheelite structure and the wolframite structure with smaller ions (<0.1 nm). Strontium tungstate has the scheelite structure which is tetragonal with space group I41/a. The luminescent properties of the tungstate have been extensively explored in application fields such as sensors, detectors, lasers, photoluminiscent devices, photo catalysts, etc. In this work, we synthesized SrWO4 phosphors with different Eu3+ concentrations by using a facile route. The morphology was analyzed by using a field-emission scanning electron microscope, which exhibits the spherical shape. Transmission electron microscope image revealed the spheres composed of nanoparticles. X-ray diffraction patterns confirmed their tetragonal shape. The photoluminescence excitation and emission spectra were analyzed by varying the Eu3+ concentration, which shows a dominant red emission.

  • PDF

Hierarchical Disparity Estimation for Image Synthesis in Stereo Mixed Reality (스테레오 혼합 현실 영상 합성을 위한 계층적 변이 추정)

  • 김한성;최승철;손광훈
    • Journal of Broadcast Engineering
    • /
    • v.7 no.3
    • /
    • pp.229-237
    • /
    • 2002
  • Natural synthesis of real and virtual images is a key technology in mixed reality. For this purpose, we propose an efficient dense disparity estimation algorithm and a synthesis algorithm considering features of stereo images. Dense disparities are estimated hierarchically from the low to high resolution images. In the process, the region-dividing-bidirectional-matching algorithm makes matching process efficient and keeps the reliability of the estimated disparities, and dense disparities are assigned considering edge information. finally, mixed reality stereo images are synthesized by comparing depth data of real and virtual Images. Computer simulation shows that the proposed algorithms estimate very stable disparity vectors with sharp edge and synthesize natural stereo mixed reality images.

Experimental Performance Verification of Energy-Harvesting System Using the Micro-vibration of the Spaceborne Cryocooler (우주용 냉각기의 미소진동을 이용한 에너지 수확 시스템의 실험적 성능검증)

  • Jung, Hyunmo;Kwon, Seongcheol;Oh, Hyunung
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.3
    • /
    • pp.15-22
    • /
    • 2016
  • The on-board appendages of satellites with mechanical moving parts such as the fly-wheel, the control-moment gyro, the cryocooler, and the gimbal-type directional antenna can generate an undesirable micro-vibration disturbance, which is one of the main causes of the image-quality degradation that affects high-resolution observation satellites. Consequently, the isolation of the micro-vibration issue has always been considered as salient, and the micro-vibration is therefore the focus of this study wherein a complex system that can provide the dual functions of a guaranteed vibration-isolation performance and electrical energy harvesting is proposed. The vibration-isolation and energy-harvesting performances of the complex system are predicted through a numerical analysis based on the characteristics that are obtained from component-level tests. In addition, the effectiveness of the complex system that is proposed in this study is verified through an assembly-level functional-performance test.

View Synthesis Using OpenGL for Multi-viewpoint 3D TV (다시점 3차원 방송을 위한 OpenGL을 이용하는 중간영상 생성)

  • Lee, Hyun-Jung;Hur, Nam-Ho;Seo, Yong-Duek
    • Journal of Broadcast Engineering
    • /
    • v.11 no.4 s.33
    • /
    • pp.507-520
    • /
    • 2006
  • In this paper, we propose an application of OpenGL functions for novel view synthesis from multi-view images and depth maps. While image based rendering has been meant to generate synthetic images by processing the camera view with a graphic engine, little has been known about how to apply the given images and depth information to the graphic engine and render the scene. This paper presents an efficient way of constructing a 3D space with camera parameters, reconstructing the 3D scene with color and depth images, and synthesizing virtual views in real-time as well as their depth images.

2D Game Image Color Synthesis System Using Convolutional Neural Network (컨볼루션 인공신경망을 이용한 2차원 게임 이미지 색상 합성 시스템)

  • Hong, Seung Jin;Kang, Shin Jin;Cho, Sung Hyun
    • Journal of Korea Game Society
    • /
    • v.18 no.2
    • /
    • pp.89-98
    • /
    • 2018
  • The recent Neural Network technique has shown good performance in content generation such as image generation in addition to the conventional classification problem and clustering problem solving. In this study, we propose an image generation method using artificial neural network as a next generation content creation technique. The proposed artificial neural network model receives two images and combines them into a new image by taking color from one image and shape from the other image. This model is made up of Convolutional Neural Network, which has two encoders for extracting color and shape from images, and a decoder for taking all the values of each encoder and generating a combination image. The result of this work can be applied to various 2D image generation and modification works in game development process at low cost.

Virtual View-point Depth Image Synthesis System for CGH (CGH를 위한 가상시점 깊이영상 합성 시스템)

  • Kim, Taek-Beom;Ko, Min-Soo;Yoo, Ji-Sang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1477-1486
    • /
    • 2012
  • In this paper, we propose Multi-view CGH Making System using method of generation of virtual view-point depth image. We acquire reliable depth image using TOF depth camera. We extract parameters of reference-view cameras. Once the position of camera of virtual view-point is defined, select optimal reference-view cameras considering position of it and distance between it and virtual view-point camera. Setting a reference-view camera whose position is reverse of primary reference-view camera as sub reference-view, we generate depth image of virtual view-point. And we compensate occlusion boundaries of virtual view-point depth image using depth image of sub reference-view. In this step, remaining hole boundaries are compensated with minimum values of neighborhood. And then, we generate final depth image of virtual view-point. Finally, using result of depth image from these steps, we generate CGH. The experimental results show that the proposed algorithm performs much better than conventional algorithms.

A High-Quality Occlusion Filling Method Using Image Inpainting (영상 인페인팅을 이용한 고품질의 가려짐 영역 보간 방법)

  • Kim, Yong-Jin;Lee, Sang-Hwa;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.15 no.1
    • /
    • pp.3-13
    • /
    • 2010
  • In this paper, we propose a method for filling out the occlusions in generating multi-view images from one source image and its ground-truth depth image. The method is based on image inpainting and layered interpolation. The source image is first divided into several layers using depth information. The occlusions are interpolated separately in every layered image using the image inpainting algorithm. Finally, the interpolated layered images are combined to obtain different viewpoint images. Interpolating occlusions with depth-correlated texture information that is contained to each layer makes it possible to obtain more detailed and accurate results than previous methods. The effectiveness of the proposed method is shown through experimental results.

Slow Sync Image Synthesis from Short Exposure Flash Smartphone Images (단노출 플래시 스마트폰 영상에서 저속 동조 영상 생성)

  • Lee, Jonghyeop;Cho, Sunghyun;Lee, Seungyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.3
    • /
    • pp.1-11
    • /
    • 2021
  • Slow sync is a photography technique where a user takes an image with long exposure and a camera flash to enlighten the foreground and background. Unlike short exposure with flash and long exposure without flash, slow sync guarantees the bright foreground and background in the dim environment. However, taking a slow sync image with a smartphone is difficult because the smartphone camera has continuous and weak flash and can not turn on flash if the exposure time is long. This paper proposes a deep learning method that input is a short exposure flash image and output is a slow sync image. We present a deep learning network with a weight map for spatially varying enlightenment. We also propose a dataset that consists of smartphone short exposure flash images and slow sync images for supervised learning. We utilize the linearity of a RAW image to synthesize a slow sync image from short exposure flash and long exposure no-flash images. Experimental results show that our method trained with our dataset synthesizes slow sync images effectively.

Efficient Hardware Architecture for Histogram Equalization Algorithm for Image Enhancement (화질 개선을 위한 히스토그램 평활화 알고리즘의 효율적인 하드웨어 구현)

  • Kim, Ji-Hyung;Park, Hyun-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.5
    • /
    • pp.967-971
    • /
    • 2009
  • The histogram equalization algorithm is the most crucial algorithm for image enhancement. Since its direct hardware implementation always requires a divider or multiplier, its implementation cost tends to increas as the image resolution is increased or diverse image resolutions are handled. In this paper, we propose a divider-free reconstruction of histogram equalization algorithm and the corresponding hardware architecture. The logic synthesis results show that the proposed scheme can reduce the logic gate count by 84.2% compared to the conventional implementation example when the UXGA resolution is considered.