• Title/Summary/Keyword: Image reconstruction

Search Result 1,567, Processing Time 0.028 seconds

RECONSTRUCTION OF LIMITED-ANGLE CT IMAGES BY AN ADAPTIVE RESILIENT BACK-PROPAGATION ALGORITHM

  • Kazunori Matsuo;Zensho Nakao;Chen, Yen-Wei;Fath El Alem F. Ah
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.839-842
    • /
    • 2000
  • A new and modified neural network model Is proposed for CT image reconstruction from four projection directions only. The model uses the Resilient Back-Propagation (Rprop) algorithm, which is derived from the original Back-Propagation, for adaptation of its weights. In addition to the error in projection directions of the image being reconstructed, the proposed network makes use of errors in pixels between an image which passed the median filter and the reconstructed one. Improved reconstruction was obtained, and the proposed method was found to be very effective in CT image reconstruction when the given number of projection directions is very limited.

  • PDF

Adaptive Algorithm in Image Reconstruction Based on Information Geometry

  • Wang, Meng;Ning, Zhen Hu;Yu, Jing;Xiao, Chuang Bai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.461-484
    • /
    • 2021
  • Compressed sensing in image reconstruction has attracted attention and many studies are proposed. As we know, adding prior knowledge about the distribution of the support on the original signal to CS can improve the quality of reconstruction. However, it is still difficult for a recovery framework adjusts its strategy for exploiting the prior knowledge efficiently according to the current estimated signals in serial iterations. With the theory of information geometry, we propose an adaptive strategy based on the current estimated signal in each iteration of the recovery. We also improve the performance of existing algorithms through the adaptive strategy for exploiting the prior knowledge according to the current estimated signal. Simulations are presented to validate the results. In the end, we also show the application of the model in the image.

Reconstruction of a 3D Model using the Midpoints of Line Segments in a Single Image (한 장의 영상으로부터 선분의 중점 정보를 이용한 3차원 모델의 재구성)

  • Park Young Sup;Ryoo Seung Taek;Cho Sung Dong;Yoon Kyung Hyun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.4
    • /
    • pp.168-176
    • /
    • 2005
  • We propose a method for 3-dimensionally reconstructing an object using a line that includes the midpoint information from a single image. A pre-defined polygon is used as the primitive and the recovery is processed from a single image. The 3D reconstruction is processed by mapping the correspondence point of the primitive model onto the photo. In the recent work, the reconstructions of camera parameters or error minimizing methods through iterations were used for model-based 3D reconstruction. However, we proposed a method for the 3D reconstruction of primitive that consists of the segments and the center points of the segments for the reconstruction process. This method enables the reconstruction of the primitive model to be processed using only the focal length of various camera parameters during the segment reconstruction process.

Effect of filters and reconstruction method on Cu-64 PET image

  • Lee, Seonhwa;Kim, Jung min;Kim, Jung Young;Kim, Jin Su
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.3 no.2
    • /
    • pp.65-71
    • /
    • 2017
  • To assess the effects of filter and reconstruction of Cu-64 PET data on Siemens scanner, the various reconstruction algorithm with various filters were assessed in terms of spatial resolution, non-uniformity (NU), recovery coefficient (RC), and spillover ratio (SOR). Image reconstruction was performed using filtered backprojection (FBP), 2D ordered subset expectation maximization (OSEM), 3D reprojection algorithm (3DRP), and maximum a posteriori algorithms (MAP). For the FBP reconstruction, ramp, butterworth, hamming, hanning, or parzen filters were used. Attenuation or scatter correction were performed to assess the effect of attenuation and scatter correction. Regarding spatial resolution, highest achievable volumetric resolution was $3.08mm^3$ at the center of FOV when MAP (${\beta}=0.1$) reconstruction method was used. SOR was below 4% for FBP when ramp, Hamming, Hanning, or Shepp-logan filter were used. The lowest NU (highest uniform) after attenuation & scatter correction was 5.39% when FBP (parzen filter) was used. Regarding RC, 0.9 < RC < 1.1 was obtained when OSEM (iteration: 10) was used when attenuation and scatter correction were applied. In this study, image quality of Cu-64 on Siemens Inveon PET was investigated. This data will helpful for the quantification of Cu-64 PET data.

Improved Reconstruction Algorithm for Spiral Scan Fast MR Imaging with DC offset Correction (DC offset을 보정한 나선 주사 초고속 자기공명영상의 재구성 알고리즘)

  • 안창범;김휴정
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.243-250
    • /
    • 1998
  • Reconstruction aspects of spiral scan imaging for ultra fast magnetic resonance imagine(MRI) have been investigated with polar and rectangular coordinates-based reconstruction. For the reconstruction of the spiral scan imaging, acquired data in spiral trjectory should be converted to polar or rectangular grids, where interpolation techniques are used. Various reconstruction algorithms for spiral scan imaging are tested, and reconstructed image qualities are compared with computed phantom. An improved reconstruction algorithm with dc-offset correction in projection domain is proposed, which provides the best reconstructed image quality from the simulation. Image artifact with existing algorithms is completely removed with the proposed method.

  • PDF

Shape Reconstruction of Solder Joints on PCB using Iterative Reconstruction Technique (반복복원 기법을 이용한 전자회로기판의 납땜부 형상 복원)

  • 조영빈;권대갑
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.353-362
    • /
    • 1999
  • This paper presents a shape reconstruction method for automatic inspection of the solder joints on PCBs using X-ray. Shape reconstruction from X-ray radiographic image has been very important since X-ray equipment was used for improving the reliability of inspection result. For this purpose there have been lots of previous works using tomography, which reconstructs the correct shape, laminography or tomosynthesis, which are very fast algorithm. Latter two methods show outstanding performance in cross-sectional image reconstruction of lead type component, but they are also known to show some fatal limitations to some kinds of components such as BGA, because of shadow effect. Although conventional tomography does not have any shadow effect, the shape of PCB prohibits it from being applied to shape reconstruction of solder joints on PCB. This paper shows that tomography using Iterative Reconstruction Technique(IRT) can be applied to this difficult problem without any limitations. This makes conventional radiographic instrument used for shape reconstruction without shadow effect. This means that the new method makes cost down and shadow-free shape reconstruction. To verify the effectiveness of IRT, we develop three dimensional model of BGA solder ball, make projection model to obtain X-ray projection data. and perform a simulation study of shape reconstruction. To compare the performance of IRT with that of conventional laminography or tomosynthesis, reconstruction data are reorganized and error analysis between the original model are also performed.

  • PDF

Accuracy Comparison Between Image-based 3D Reconstruction Technique and Terrestrial LiDAR for As-built BIM of Outdoor Structures

  • Lee, Jisang;Hong, Seunghwan;Cho, Hanjin;Park, Ilsuk;Cho, Hyoungsig;Sohn, Hong-Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.6
    • /
    • pp.557-567
    • /
    • 2015
  • With the increasing demands of 3D spatial information in urban environment, the importance of point clouds generation techniques have been increased. In particular, for as-built BIM, the point clouds with the high accuracy and density is required to describe the detail information of building components. Since the terrestrial LiDAR has high performance in terms of accuracy and point density, it has been widely used for as-built 3D modelling. However, the high cost of devices is obstacle for general uses, and the image-based 3D reconstruction technique is being a new attraction as an alternative solution. This paper compares the image-based 3D reconstruction technique and the terrestrial LiDAR in point of establishing the as-built BIM of outdoor structures. The point clouds generated from the image-based 3D reconstruction technique could roughly present the 3D shape of a building, but could not precisely express detail information, such as windows, doors and a roof of building. There were 13.2~28.9 cm of RMSE between the terrestrial LiDAR scanning data and the point clouds, which generated from smartphone and DSLR camera images. In conclusion, the results demonstrate that the image-based 3D reconstruction can be used in drawing building footprint and wireframe, and the terrestrial LiDAR is suitable for detail 3D outdoor modeling.

The Determination of Resolution on the Improved FBP Tomographic Algorithm (개선된 FBP 토모그라픽 알고리즘에서 분해능의 결정)

  • Koo, Kil-Mo;Hwang, Ki-Hwan;Park, Chi-Seong;Ko, Duck-Young
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.1
    • /
    • pp.21-28
    • /
    • 2005
  • In this paper, we studied resolution to the FBP(Filtered Back-Propagation) tomographic image reconstruction algorithms. In order to analyze the resolution to the tomographic images, we derived ambiguity function to this algorithm which can be reconstructed from the improved FBP image reconstruction algorithm by using fixed coordinate system practically. Through simulation using this function, we determined the lateral and depth resolution quantitively and then analyzed respectively. Simulation results show that the lateral and depth resolution to the improved FBP image reconstruction algerian was determined $0.27\lambda\;and\;0.70\lambda$ at the 3dB, and also $0.89\lambda\;and\;0.96\lambda$ at the 6dB respectively. This results proved that improved FBP reconstruction algorithms for diffraction tomography of incident planar wave is useful to developed the tomographic image system, analyze the resolution to the tomographic images, we derived ambiguity function to this algerian which can be reconstructed from the improved FBP image reconstruction algorithm by using fixed coordinate system.

3D Shape Reconstruction of Cross-sectional Images using Image Processing Technology and B-spline Approximation (영상 처리 기법과 B-spline 근사화를 이용한 단면영상의 3차원 재구성)

  • 임오강;이진식;김종구
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.93-100
    • /
    • 2001
  • The three dimensional(3D) reconstruction from two dimensional(2D) image data is using in many fields such as RPD(Rapid Product Development) and reverse engineering. In this paper, the main step of 3D reconstruction is comprised of two steps : image processing step and B-spline surface approximation step. In the image processing step, feature points of each cross-section are obtained by means of several image processing technologies. In the B-spline surface approximation step, using the data of feature points obtained in the image processing step, the control points of B-spline surface are obtained, which are used for IGES file of 3D CAD model.

  • PDF

Sparse-View CT Image Recovery Using Two-Step Iterative Shrinkage-Thresholding Algorithm

  • Chae, Byung Gyu;Lee, Sooyeul
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1251-1258
    • /
    • 2015
  • We investigate an image recovery method for sparse-view computed tomography (CT) using an iterative shrinkage algorithm based on a second-order approach. The two-step iterative shrinkage-thresholding (TwIST) algorithm including a total variation regularization technique is elucidated to be more robust than other first-order methods; it enables a perfect restoration of an original image even if given only a few projection views of a parallel-beam geometry. We find that the incoherency of a projection system matrix in CT geometry sufficiently satisfies the exact reconstruction principle even when the matrix itself has a large condition number. Image reconstruction from fan-beam CT can be well carried out, but the retrieval performance is very low when compared to a parallel-beam geometry. This is considered to be due to the matrix complexity of the projection geometry. We also evaluate the image retrieval performance of the TwIST algorithm -sing measured projection data.