• Title/Summary/Keyword: Image reconstruction

Search Result 1,567, Processing Time 0.029 seconds

3D CT Image Processing for 3D Printed Auricular Reconstruction of Unilateral Microtia Patient

  • Roh, Tae Suk;Yun, In Sik
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.2
    • /
    • pp.80-82
    • /
    • 2014
  • Purpose Microtia is congenital anomaly of external ear and the reconstruction method for the external ear of microtia patient was based on autogenous costal cartilage framework. The application of 3D printing technique in medical science has made more possibility of human tissue restoration, and we tried to apply this technique in auricular reconstruction field. Materials and Methods As for unilateral microtia patient, the contralateral side ear is normal and reconstructive surgeon tried to mimic it for reconstruction of affected ear. So, we obtained facial CT scan of microtia patient and made mirror image of normal side ear. Moreover, to make the 3D scaffold based on the mirror image of normal ear and to apply this scaffold for the auricular reconstruction surgery, we included auriculocephalic sulcus and anterior fixation part. Results We could successfully obtain mirror image of normal ear, auriculocephalic sulcus and anterior fixation part for 3D scaffold printing. Conclusions Using this CT image processing and 3D printing technique, we will be able to make the scaffold for auricular reconstruction of unilateral microtia patient, and perform auricular reconstruction in near future.

Image Reconstruction Using Line-scan Image for LCD Surface Inspection (LCD표면 검사를 위한 라인스캔 영상의 재구성)

  • 고민석;김우섭;송영철;최두현;박길흠
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.4
    • /
    • pp.69-74
    • /
    • 2004
  • In this paper, we propose a novel method for improving defect-detection performance based on reconstruction of line-scan camera images using both the projection profiles and color space transform. The proposed method consists of RGB region segmentation, representative value reconstruction using the tracing system, and Y image reconstruction using color-space transformation. Through experiments it is demonstrated that the performance using the reconstructed image is better than that using aerial image for LCD surface inspection.

Reconstruction of Buildings from Satellite Image and LIDAR Data

  • Guo, T.;Yasuoka, Y.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.519-521
    • /
    • 2003
  • Within the paper an approach for the automatic extraction and reconstruction of buildings in urban built-up areas base on fusion of high-resolution satellite image and LIDAR data is presented. The presented data fusion scheme is essentially motivated by the fact that image and range data are quite complementary. Raised urban objects are first segmented from the terrain surface in the LIDAR data by making use of the spectral signature derived from satellite image, afterwards building potential regions are initially detected in a hierarchical scheme. A novel 3D building reconstruction model is also presented based on the assumption that most buildings can be approximately decomposed into polyhedral patches. With the constraints of presented building model, 3D edges are used to generate the hypothesis and follow the verification processes and a subsequent logical processing of the primitive geometric patches leads to 3D reconstruction of buildings with good details of shape. The approach is applied on the test sites and shows a good performance, an evaluation is described as well in the paper.

  • PDF

2D Image Reconstruction of Earth Model by Electrical Resistance Tomography (ERT를 이용한 2차원 대지모델 영상복원)

  • Boo, Chang-Jin;Kim, Ho-Chan;Kang, Min-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3460-3467
    • /
    • 2013
  • The In this paper, we have made numerical experiments to compare 2D image reconstruction algorithm of earth model by electrical resistance tomograpy (ERT). Gauss-Newton, simultaneous iterative reconstruction technieque (SIRT) and truncated least squares (TLS) approaches for Wenner and Schlumberger electrode arrays are presented for the solution of the ERT image reconstruction. Computer simulations show that the Gauss-Newton and TLS approach in ERT are proper for 2D image reconstruction of an earth model.

Numerical Reconstruction and Pattern Recognition using Integral Imaging

  • Yeom, Seo-Kwon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1131-1134
    • /
    • 2008
  • In this invited paper, numerical reconstruction and pattern recognition using integral imaging are overviewed. The computational integral imaging method reconstructs three-dimensional information at arbitrary depth-levels. Photon-counting nonlinear matched filtering combined with the computational reconstruction provides promising results for the application of low-light level recognition.

  • PDF

Effectual Method FOR 3D Rebuilding From Diverse Images

  • Leung, Carlos Wai Yin;Hons, B.E.
    • 한국정보컨버전스학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.145-150
    • /
    • 2008
  • This thesis explores the problem of reconstructing a three-dimensional(3D) scene given a set of images or image sequences of the scene. It describes efficient methods for the 3D reconstruction of static and dynamic scenes from stereo images, stereo image sequences, and images captured from multiple viewpoints. Novel methods for image-based and volumetric modelling approaches to 3D reconstruction are presented, with an emphasis on the development of efficient algorithm which produce high quality and accurate reconstructions. For image-based 3D reconstruction a novel energy minimisation scheme, Iterated Dynamic Programming, is presented for the efficient computation of strong local minima of discontinuity preserving energyy functions. Coupled with a novel morphological decomposition method and subregioning schemes for the efficient computation of a narrowband matching cost volume. the minimisation framework is applied to solve problems in stereo matching, stereo-temporal reconstruction, motion estimation, 2D image registration and 3D image registration. This thesis establishes Iterated Dynamic Programming as an efficient and effective energy minimisation scheme suitable for computer vision problems which involve finding correspondences across images. For 3D reconstruction from multiple view images with arbitrary camera placement, a novel volumetric modelling technique, Embedded Voxel Colouring, is presented that efficiently embeds all reconstructions of a 3D scene into a single output in a single scan of the volumetric space under exact visibility. An adaptive thresholding framework is also introduced for the computation of the optimal set of thresholds to obtain high quality 3D reconstructions. This thesis establishes the Embedded Voxel Colouring framework as a fast, efficient and effective method for 3D reconstruction from multiple view images.

  • PDF

Three-dimensional Reconstruction of the Knee for Ligament Reconstruction

  • Kim, Sung-Hwan;Ha, Seung-Joo
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.1
    • /
    • pp.19-22
    • /
    • 2014
  • As computer technology develops and this is applied to medical image field, three dimensional image reconstruction technology using computer simulation is utilized in various categories that include anatomical study and biomechanics study of human body. Especially orthopedic surgeons are able to investigate biomechanical function and be provided information for operations with this technology in terms of ligament reconstruction of knee. And this technology can be utilized in preparing preoperative planning and instructions and training. This review is about three dimensional image reconstruction technology which is utilized in ligament reconstruction of knee.

Spatial Frequency Coverage and Image Reconstruction for Photonic Integrated Interferometric Imaging System

  • Zhang, Wang;Ma, Hongliu;Huang, Kang
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.606-616
    • /
    • 2021
  • A photonic integrated interferometric imaging system possesses the characteristics of small-scale, low weight, low power consumption, and better image quality. It has potential application for replacing conventional large space telescopes. In this paper, the principle of photonic integrated interferometric imaging is investigated. A novel lenslet array arrangement and lenslet pairing approach are proposed, which are helpful in improving spatial frequency coverage. For the novel lenslet array arrangement, two short interference arms were evenly distributed between two adjacent long interference arms. Each lenslet in the array would be paired twice through the novel lenslet pairing approach. Moreover, the image reconstruction model for optical interferometric imaging based on compressed sensing was established. Image simulation results show that the peak signal to noise ratio (PSNR) of the reconstructed image based on compressive sensing is about 10 dB higher than that of the direct restored image. Meanwhile, the normalized mean square error (NMSE) of the direct restored image is approximately 0.38 higher than that of the reconstructed image. Structural similarity index measure (SSIM) of the reconstructed image based on compressed sensing is about 0.33 higher than that of the direct restored image. The increased spatial frequency coverage and image reconstruction approach jointly contribute to better image quality of the photonic integrated interferometric imaging system.

3D reconstruction using a method of the planar homography from uncalibrated camera

  • Yoon Yong In;Choi Jong Soo;Kwon Jun sik;Kwon Oh Keun
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.804-809
    • /
    • 2004
  • It is essential to calibrate a camera in order to recover 3-dimensional reconstruction from uncalibrated images. This paper proposes a new technique of the camera calibration using a homography between the planar patterns image taken by the camera, which is located at the three planar patterns image. Since the proposed method should be computed from the homography among the three planar patterns from a single image, it is implemented more easily and simply to recover 3D object than the conventional. Experimental results show the performances of the proposed method are the better than the conventional. We demonstrate the examples of 3D reconstruction using the proposed algorithm from image sequence.

  • PDF

Evaluation of Adult Lung CT Image for Ultra-Low-Dose CT Using Deep Learning Based Reconstruction

  • JO, Jun-Ho;MIN, Hyo-June;JEON, Kwang-Ho;KIM, Yu-Jin;LEE, Sang-Hyeok;KIM, Mi-Sung;JEON, Pil-Hyun;KIM, Daehong;BAEK, Cheol-Ha;LEE, Hakjae
    • Korean Journal of Artificial Intelligence
    • /
    • v.9 no.2
    • /
    • pp.1-5
    • /
    • 2021
  • Although CT has an advantage in describing the three-dimensional anatomical structure of the human body, it also has a disadvantage in that high doses are exposed to the patient. Recently, a deep learning-based image reconstruction method has been used to reduce patient dose. The purpose of this study is to analyze the dose reduction and image quality improvement of deep learning-based reconstruction (DLR) on the adult's chest CT examination. Adult lung phantom was used for image acquisition and analysis. Lung phantom was scanned at ultra-low-dose (ULD), low-dose (LD), and standard dose (SD) modes, and images were reconstructed using FBP (Filtered back projection), IR (Iterative reconstruction), DLR (Deep learning reconstruction) algorithms. Image quality variations with respect to varying imaging doses were evaluated using noise and SNR. At ULD mode, the noise of the DLR image was reduced by 62.42% compared to the FBP image, and at SD mode, the SNR of the DLR image was increased by 159.60% compared to the SNR of the FBP image. Based on this study, it is anticipated that the DLR will not only substantially reduce the chest CT dose but also drastic improvement of the image quality.