본 논문에서는 다중입력-다중출력(multiple-input, multiple-output: MIMO) 간섭계(interferometric) 레이다 네트워크 시스템을 기반한 MIMO 간섭계 역합성 개구면 레이다(inverse synthetic aparture radar: InISAR) 영상 형성기법에 관해 연구하였다. MIMO 간섭계 레이다 네트워크 시스템 내에서는 여러 바이스태틱 InISAR 영상들이 형성되며, 이들을 인코히리언트(incoherent)하게 합성함으로써 MIMO InISAR 영상을 형성할 수 있다. 여기서, 바이스태틱 InISAR 영상은 바이스태틱 기하구조 내에서의 표적에 대한 산란분포를 3차원의 형태로 도시한다. 상기 MIMO InISAR 영상에서는 다중 각도에서의 바이스태틱 산란 현상을 3차원의 형태로 도시하기 때문에, 표적의 다양한 산란 정보를 제공함과 더불어, 표적 식별 시 유용한 특징 벡터(feature vector)로써 활용될 수 있다. 시뮬레이션을 통해, 제안된 MIMO InISAR 영상 형성 기법을 이용함으로써 표적에 대한 다중각도에서의 바이스태틱 산란분포가 3차원의 형태로 도시되는 것을 확인할 수 있다.
본 논문에서는 1차원 레이더 특성(signature)인 고해상도 거리 측면도(HRRP)와 2차원 레이더 특성인 ISAR 영상을 형성하기 위하여 CS(Compressive Sensing) 기반의 레이더 신호 모델을 적용한 sparse 복원(sparse recovery) 알고리즘을 소개하고자 한다. 만약, 관측된 RCS(Radar Cross Section) 데이터 샘플에서 데이터 손실이 발생할 경우, 기존의 discrete Fourier transform(DFT) 방식으로는 올바른 고해상도의 레이더 특성들을 얻을 수 없다. 하지만, 데이터 손실이 존재하더라도 상기 sparse 복원 알고리즘을 적용하면 고해상도의 레이더 특성을 성공적으로 복원할 수 있고, 원래 광대역의 RCS 데이터를 이용한 레이더 특성과 동등하게 고해상도를 유지할 수 있다. 따라서, 본 논문에서 보여준 결과에서와 같이 원하지 않는 간섭신호나 전파 교란 신호에 의해 데이터 손실이 발생한 RCS 데이터를 수집하더라도, sparse 복원 알고리즘을 이용하면 기존 DFT 방식과 달리 고해상도의 레이더 특성을 성공적으로 복원할 수 있음을 관찰할 수 있었다.
본 논문에서는 Synthetic Aperture Radar 시스템 요동보상기법을 통해 영상을 형성하는 방법을 컴퓨터 시뮬레이션으로 실현하였다. 거리압축과정, 보상과정, 방위압축과정 및 잡음제거과정 등 요동보상 기법을 단계별로 실행하여 영상데이터를 형성하였다. 거리압축과정은 SAR 생데이터를 주파수영역으로 변환하고 변환된 데이터와 주파수영역의 거리참조함수를 상관시킨 후 결과를 시간영역으로 역변환 시키는 과정이다. 보상과정은 SAR를 탑재한 비행체의 요동을 보상하는 과정과 영상형성 방법상의 화질 저하요인을 제거하는 과정으로 분류하여 수행하였다. 비행체의 요동을 보상하는 과정은 렌지 게이트의 개폐시각을 기준으로 위상각을 보정하는 단계 및 빔내의 각 렌지 게이트에 대한 도플러 주파수를 계산하여 수신 데이터의 지상좌표를 결정하는 단계로 분류하여 수행하였다. 영상형성 방법상의 화질저하 요인을 보상하는 과정은 거리이동 효과 및 몽롱화 현상의 보상기준에 따라 보상의 정도 및 보상 유무가 결정되고 필요한 경우에만 보상과정이 수행된다. 방위압축과정은 보상과정이 완료된 데이터를 다시 주파수영역으로 변환하여 방위참조함수와 상관시킨 후 결과를 시간영역으로 역변환 시키는 과정으로 SAR의 영상데이터를 형성한다. 이렇게 형성된 영상데이터는 잡음과 신호가 혼용된 상태이므로 임계값을 적용하여 잡음과 신호를 분리한다.
We propose an object extraction technique adequate for the radial shape's radar signal structure for the purpose of implementing ARPA(Automatic Radar Plotting Aid) installed in the vessel. The radar signal data are processed by interpolation and accumulation to acquire a qualified image. The objects of the radar image have characteristics of having different shape and size as it gets far from the center, and it is not adequate for clustering generally. Therefore, this study designs a new vigilance distance model of elliptical shape and adopts this model in the ART2 neural network. We prove that the proposed clustering method makes it possible to extract objects adaptively and to separate the connected objects effectively.
본 논문에서는 FMCW 레이다 기반으로 휴먼 모션 인식을 위한 레이다 영상 추출 알고리즘을 제안하였다. 3D(거리-속도-각도) 스펙트럼을 생성하였고, 각 좌표방향으로 압축을 통해 세 개의 마이크로-프로파일 영상을 생성하였다. 이때 몸으로부터 반사된 신호를 억제하기 위한 클러터 억제 알고리즘을 적용하였다. 생성된 거리, 도플러. 각도-영상을 향후 영상처리 및 분류기에 적용함으로써, 다양한 모션 종류를 구별할 수 있을 것으로 판단된다.
In electronic warfare(EW), low probability of intercept(LPI) radar signal is a survival technique. Accordingly, identification techniques of the LPI radar waveform have became significant recently. In this paper, classification and extracting parameters techniques for 7 intrapulse modulated radar signals are introduced. We propose a technique of classifying intrapulse modulated radar signals using Convolutional Neural Network(CNN). The time-frequency image(TFI) obtained from Choi-William Distribution(CWD) is used as the input of CNN without extracting the extra feature of each intrapulse modulated radar signals. In addition a method to extract the intrapulse radar modulation parameters using binary image processing is introduced. We demonstrate the performance of the proposed intrapulse radar waveform identification system. Simulation results show that the classification system achieves a overall correct classification success rate of 90 % or better at SNR = -6 dB and the parameter extraction system has an overall error of less than 10 % at SNR of less than -4 dB.
Usually marine traffic survey has been conducted by some methods like an ocular observation using portable RADAR, a questionnaire, etc. But these should have expended a lot of manpower and expenses. In this paper, we have developed new observation module which could capture the RADAR image using PC camera simply, and allowed as to track targets on the PC monitor directly. And it has been programmed to make a database of RADAR image, target's track and information, and analyze the marine traffic tendency in various ways like vessel number crossed over gate line, vessel's velocity distribution in gate line, traffic density distribution, etc. We have confirmed that this module could observe and analyze the marine traffic efficiently and economically through several on-the-spot experiments.
본 논문에서는 불완전한 radar-cross-section(RCS) 데이터로부터 inverse synthetic aperture radar(ISAR) 영상 복원과 동시에 표적의 회전각도를 추정하기 위한 compressive sensing(CS) 기반의 레이더 신호 모델을 적용한 parametric sparse 복원 알고리즘을 제안하고자 한다. Sparse 복원 알고리즘으로는 iteratively-reweighted-least-square(IRLS) 기법을 이용하여 각도 방향(cross-range)에서 모르는 처프 비율(chirp rate)의 처프 성분을 포함하는 레이더 신호 모델과 결합한다. 그리고, particle swarm optimization(PSO) 최적화 알고리즘을 이용하여 표적의 회전각도와 연관된 파라미터들을 추출한다. 따라서, RCS 데이터 샘플에 데이터 손실이 발생하더라도 본 논문의 IRLS 기반 parametric sparse 복원 알고리즘에 따라 효율적으로 ISAR 영상을 복원할 수 있고, 동시에 표적의 회전각도를 추정할 수 있다. 또한, 불완전한 RCS 데이터 샘플에 대하여 영상의 엔트로피 관점에서 본 논문에서 제안한 방법의 성능과 전통적인 보간법의 성능을 서로 비교 관찰한다.
본 논문은 2-차원에서 3가지 형태(Square, Cross, X-shape)의 메디안 필터를 사용하여 레이다 영상의 원영상을 유지하면서 잡음을 제거하여 영상을 개선하고, 연산자를 적용하여 경계를 검출한다. 레이다 영상의 특성에서 곡선 부분이 많으므로 제안된 경계 검출 연산자에 의한 결과와 기존의 경계검출 방법인 Sobel, Prewitt, Robert, Laplacian. Kirsch의 결과를 비교한다.
In order to set up radar cross section(RCS) reduction factors for a target, the scattering point position of the target should be identified through inverse synthetic aperture radar(ISAR) image analysis. For this purpose, ISAR image focusing is important. Maritime ship is non-linear maneuvering in the sea, however, which blur the ISAR image. To solve this problem, translational and rotational motion compensation are essential to form focused ISAR image. In this paper, hourglass and ISAR image analysis are performed on the collected data in the sea instead of using the prediction software tool, which takes much time and cost to make computer-aided design(CAD) model of the ship.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.