• Title/Summary/Keyword: Image preprocessing

Search Result 706, Processing Time 0.026 seconds

Multi-modality MEdical Image Registration based on Moment Information and Surface Distance (모멘트 정보와 표면거리 기반 다중 모달리티 의료영상 정합)

  • 최유주;김민정;박지영;윤현주;정명진;홍승봉;김명희
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.3_4
    • /
    • pp.224-238
    • /
    • 2004
  • Multi-modality image registration is a widely used image processing technique to obtain composite information from two different kinds of image sources. This study proposes an image registration method based on moment information and surface distance, which improves the previous surface-based registration method. The proposed method ensures stable registration results with low registration error without being subject to the initial position and direction of the object. In the preprocessing step, the surface points of the object are extracted, and then moment information is computed based on the surface points. Moment information is matched prior to fine registration based on the surface distance, in order to ensure stable registration results even when the initial positions and directions of the objects are very different. Moreover, surface comer sampling algorithm has been used in extracting representative surface points of the image to overcome the limits of the existed random sampling or systematic sampling methods. The proposed method has been applied to brain MRI(Magnetic Resonance Imaging) and PET(Positron Emission Tomography), and its accuracy and stability were verified through registration error ratio and visual inspection of the 2D/3D registration result images.

An Embedded FAST Hardware Accelerator for Image Feature Detection (영상 특징 추출을 위한 내장형 FAST 하드웨어 가속기)

  • Kim, Taek-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.28-34
    • /
    • 2012
  • Various feature extraction algorithms are widely applied to real-time image processing applications for extracting significant features from images. Feature extraction algorithms are mostly combined with image processing algorithms mostly for image tracking and recognition. Feature extraction function is used to supply feature information to the other image processing algorithms and it is mainly implemented in a preprocessing stage. Nowadays, image processing applications are faced with embedded system implementation for a real-time processing. In order to satisfy this requirement, it is necessary to reduce execution time so as to improve the performance. Reducing the time for executing a feature extraction function dose not only extend the execution time for the other image processing algorithms, but it also helps satisfy a real-time requirement. This paper explains FAST (Feature from Accelerated Segment Test algorithm) of E. Rosten and presents FPGA-based embedded hardware accelerator architecture. The proposed acceleration scheme can be implemented by using approximately 2,217 Flip Flops, 5,034 LUTs, 2,833 Slices, and 18 Block RAMs in the Xilinx Vertex IV FPGA. In the Modelsim - based simulation result, the proposed hardware accelerator takes 3.06 ms to extract 954 features from a image with $640{\times}480$ pixels and this result shows the cost effectiveness of the propose scheme.

Noise Band Elemination of Hyperion Image using Fractal Dimension and Continuum Removal Method (프랙탈 차원 및 Continuum Removal 기법을 이용한 Hyperion 영상의 노이즈 밴드 제거)

  • Chang, An-Jin;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.125-131
    • /
    • 2008
  • Hyperspectral imaging is used in a wide variety of research since the image is obtained with a wider wavelength range and more bands than multispectral imaging. However, there are limitations, namely that each band has a shorter wavelength range, the computation cost is increased in the case of numerous bands, and a high correlation between each band and noise bands exists. The previous analysis method does not produce ideal results due to these limitations. Therefore, in the case of using the hyperspectral image, image analysis after eliminating noise bands is more accurate and efficient. In this study, noise band elimination of the hyperspectral image preprocessing is highlighted, and we use fractal dimension for noise band elimination. The Triangular Prism Method is used, being the typical fractal dimension method of the curved surface. The fractal dimension of each band is calculated. We then apply the Continuum Removal method to normalize. A total of 35 bands are estimated by noise band with a threshold value that is obtained empirically. The hyperion hyperstpectral image collected on the EO-1 satellite is used in this study. The result delineates that noise bands of the hyperion image are able to be eliminated with the fractal dimension and Continuum Removal method.

Hand Biometric Information Recognition System of Mobile Phone Image for Mobile Security (모바일 보안을 위한 모바일 폰 영상의 손 생체 정보 인식 시스템)

  • Hong, Kyungho;Jung, Eunhwa
    • Journal of Digital Convergence
    • /
    • v.12 no.4
    • /
    • pp.319-326
    • /
    • 2014
  • According to the increasing mobile security users who have experienced authentication failure by forgetting passwords, user names, or a response to a knowledge-based question have preference for biological information such as hand geometry, fingerprints, voice in personal identification and authentication. Therefore biometric verification of personal identification and authentication for mobile security provides assurance to both the customer and the seller in the internet. Our study focuses on human hand biometric information recognition system for personal identification and personal Authentication, including its shape, palm features and the lengths and widths of the fingers taken from mobile phone photographs such as iPhone4 and galaxy s2. Our hand biometric information recognition system consists of six steps processing: image acquisition, preprocessing, removing noises, extracting standard hand feature extraction, individual feature pattern extraction, hand biometric information recognition for personal identification and authentication from input images. The validity of the proposed system from mobile phone image is demonstrated through 93.5% of the sucessful recognition rate for 250 experimental data of hand shape images and palm information images from 50 subjects.

Optical Microscope Image Processing for Automated Cells Counting (세포 자동 계수를 위한 광학현미경 이미지 처리)

  • Cho, Mi-Gyung;Moon, Sang-Jun;Shim, Jae-Sool
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2493-2499
    • /
    • 2011
  • With growth of nano-bio industry, it is of significant importance to develop an automated system to exploit cell behaviors, including migration, mitosis, apoptosis, shape deformation of individual cells and their interactions among cells in the process of cell growth. In this paper, we proposed preprocessing techniques, a classification method which classifies clusters (overlapping multiple cells) from cells and an automated method which counts the number of cells and clusters in order to analyze 2D or 3D deformations of the cells in the real-time images from microscope in the cell culture. We conducted the 3T3 cell images taken from each thirty-minute interval. It showed the average 99.8% accuracy automatically for separating cells and clusters.

Fingerprint Identification Using the Distribution of Ridge Directions (방향분포를 이용한 지문인식)

  • Kim Ki-Cheol;Choi Seung-Moon;Lee Jung-Moon
    • Journal of Digital Contents Society
    • /
    • v.2 no.2
    • /
    • pp.179-189
    • /
    • 2001
  • This paper aims at faster processing and retrieval in fingerprint identification systems by reducing the amount of preprocessing and the size of the feature vector. The distribution of fingerprint directions is a set of local directions of ridges and furrows in small overlapped blocks in a fingerprint image. It is extracted initially as a set of 8-direction components through the Gabor filter bank. The discontinuous distribution of directions is smoothed to a continuous one and visualized as a direction image. Then the center of the distribution is selected as a reference point. A feature vector is composed of 192 sine values of the ridge angles at 32-equiangular positions with 6 different distances from the reference point in the direction image. Experiments show that the proposed algorithm performs the same level of correct identification as a conventional algorithm does, while speeding up the overall processing significantly by reducing the length of the feature vector.

  • PDF

Text extraction in images using simplify color and edges pattern analysis (색상 단순화와 윤곽선 패턴 분석을 통한 이미지에서의 글자추출)

  • Yang, Jae-Ho;Park, Young-Soo;Lee, Sang-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.8
    • /
    • pp.33-40
    • /
    • 2017
  • In this paper, we propose a text extraction method by pattern analysis on contour for effective text detection in image. Text extraction algorithms using edge based methods show good performance in images with simple backgrounds, The images of complex background has a poor performance shortcomings. The proposed method simplifies the color of the image by using K-means clustering in the preprocessing process to detect the character region in the image. Enhance the boundaries of the object through the High pass filter to improve the inaccuracy of the boundary of the object in the color simplification process. Then, by using the difference between the expansion and erosion of the morphology technique, the edges of the object is detected, and the character candidate region is discriminated by analyzing the pattern of the contour portion of the acquired region to remove the unnecessary region (picture, background). As a final result, we have shown that the characters included in the candidate character region are extracted by removing unnecessary regions.

Design and Implementation of a Pre-processing Method for Image-based Deep Learning of Malware (악성코드의 이미지 기반 딥러닝을 위한 전처리 방법 설계 및 개발)

  • Park, Jihyeon;Kim, Taeok;Shin, Yulim;Kim, Jiyeon;Choi, Eunjung
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.5
    • /
    • pp.650-657
    • /
    • 2020
  • The rapid growth of internet users and faster network speed are driving the new ICT services. ICT Technology has improved our way of thinking and style of life, but it has created security problems such as malware, ransomware, and so on. Therefore, we should research against the increase of malware and the emergence of malicious code. For this, it is necessary to accurately and quickly detect and classify malware family. In this paper, we analyzed and classified visualization technology, which is a preprocessing technology used for deep learning-based malware classification. The first method is to convert each byte into one pixel of the image to produce a grayscale image. The second method is to convert 2bytes of the binary to create a pair of coordinates. The third method is the method using LSH. We proposed improving the technique of using the entire existing malicious code file for visualization, extracting only the areas where important information is expected to exist and then visualizing it. As a result of experimenting in the method we proposed, it shows that selecting and visualizing important information and then classifying it, rather than containing all the information in malicious code, can produce better learning results.

Decision-Tree Algorithm for Recognition of Music Score Images Obtained by Mobile Phone Camera (휴대폰 카메라로 촬영한 악보 영상 인식을 위한 의사트리 알고리즘)

  • Park, Keon-Hee;Oh, Sung-Ryul;Son, Hwa-Jeong;Yoo, Jae-Myeong;Kim, Soo-Hyung;Lee, Guee-Sang
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.6
    • /
    • pp.16-25
    • /
    • 2008
  • Today, mobile phone is a necessity of modern life. For that reason, we suggest a particular system of a mobile phone which take a picture of music score image and automatically play it without any technical knowledges about the music score information. This experiment makes midi, acknowleging separate symbols via preprocessing to music score image taken. This paper utilizes 11 sorts of the score image taken by a mobile phone camera for this experiment. Through this method we suggest, as much as 98% on average takes place, which is very high recognizing ratio. Also, as we introduce this system in a mobile phone by porting, it takes 8.63 seconds on average to create midi following input of images.

Face Image Illumination Normalization based on Illumination-Separated Eigenface Subspace (조명분리 고유얼굴 부분공간 기반 얼굴 이미지 조명 정규화)

  • Seol, Tae-in;Chung, Sun-Tae;Ki, Sunho;Cho, Seongwon
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.179-184
    • /
    • 2009
  • Robust face recognition under various illumination environments is difficult to achieve. For face recognition robust to illumination changes, usually face images are normalized with respect to illumination as a preprocessing step before face recognition. The anisotropic smoothing-based illumination normalization method, known to be one of the best illumination normalization methods, cannot handle casting shadows. In this paper, we present an efficient illumination normalization method for face recognition. The proposed illumination normalization method separates the effect of illumination from eigenfaces and constructs an illumination-separated eigenface subspace. Then, an incoming face image is projected into the subspace and the obtained projected face image is rendered so that illumination effects including casting shadows are reduced as much as possible. Application to real face images shows the proposed illumination normalization method.

  • PDF