• 제목/요약/키워드: Image pre-processing

검색결과 486건 처리시간 0.027초

우성과 비우성 손에서의 운동학습으로 나타나는 뇌 활성도 차이: fMRI 사례 연구 (The Difference of Cortical Activation Pattern According to Motor Learning in Dominant and Non.dominant Hand: An fMRI Case Study)

  • 박지원;장성호
    • The Journal of Korean Physical Therapy
    • /
    • 제21권1호
    • /
    • pp.81-87
    • /
    • 2009
  • Purpose: Human brain was lateralized to dominant or non-dominant hemisphere, and could be reorganized by the processing of the motor learning. We reported four cases which showed the changes of the cortical activation patterns resulting from two weeks of training with the serial reaction time task. Methods: Four right-handed healthy subjects were recruited, who was equally divided to two training conditions (right hand training or left hand training). They were assigned to train the serial reaction time task for two weeks, which should press the corresponding four colored buttons as fast as accurately as possible when visual stimulus was presented. Before and after two weeks of training, reaction time and function magnetic resonance image (fMRI) was acquired during the performance of the same serial reaction time task as the training. Results: The reaction time was significantly decreased in all of subjects after training. Our fMRI result showed that widespread bilateral activation at the pre scanning was shifted toward the focused activation on the contralateral hemisphere with progressive motor learning. However, the bilateral activation was still remained during the performance of the non-dominant hand. Conclusion: These findings showed that the repetitive practice of the serial reaction time task led to increase the movement speed and accuracy, as described by motor learning. Such motor learning induced to change the cortical activation pattern. And, the changed pattern of the cortical activation resulting from motor learning was different each other in accordance with the hand dominance.

  • PDF

Construction reproducibility of a composite tooth model composed of an intraoral-scanned crown and a cone-beam computed tomography-scanned root

  • Lim, Seung-Weon;Moon, Ryu-Jin;Kim, Min-Seok;Oh, Min-Hee;Lee, Kyung-Min;Hwang, Hyeon-Shik;Kim, Tae-Woo;Baek, Seung-Hak;Cho, Jin-Hyoung
    • 대한치과교정학회지
    • /
    • 제50권4호
    • /
    • pp.229-237
    • /
    • 2020
  • Objective: To evaluate the construction reproducibility of a composite tooth model (CTM) composed of an intraoral-scanned crown and a cone-beam computed tomography (CBCT)-scanned root. Methods: The study assessed 240 teeth (30 central incisors, 30 canines, 30 second premolars, and 30 first molars in the maxillary and mandibular arches) from 15 young adult patients whose pre-treatment intraoral scan and CBCT were available. Examiner-Reference (3 years' experience in CTM construction) and Examiners-A and Examiner-B (no experience) constructed the individual CTMs independently by performing the following steps: image acquisition and processing into a three-dimensional model, integration of intraoral-scanned crowns and CBCT-scanned teeth, and replacement of the CBCT-scanned crown with the intraoral-scanned crown. The tooth axis angle in terms of mesiodistal angulation and buccolingual inclination of the CTMs constructed by the three examiners were measured. To assess the construction reproducibility of CTMs, intraclass correlation coefficient (ICC) assessments were performed. Results: The ICC values of mesiodistal angulation and buccolingual inclination among the 3 examiners showed excellent agreement (0.950-0.992 and 0.965-0.993; 0.976-0.994 and 0.973-0.995 in the maxillary and mandibular arches, respectively). Conclusions: The CTM showed excellent construction reproducibility in mesiodistal angulation and buccolingual inclination regardless of the construction skill and experience levels of the examiners.

차량후면부 차량특징정보 검출을 통한 차량정보인식 및 자동과금시스템 (Vehicle Information Recognition and Electronic Toll Collection System with Detection of Vehicle feature Information in the Rear-Side of Vehicle)

  • 이응주
    • 한국멀티미디어학회논문지
    • /
    • 제7권1호
    • /
    • pp.35-43
    • /
    • 2004
  • 본 논문에서는 고속도로나 도심 진입 차량의 무인 자동과금 및 주요시설 출입 차량의 통제와 관리를 위하여 차량번호판 인식뿐만 아니라 차량 표시 문자와 제조사 식별자 검출 분류하여 차량의 정보를 판독하는 차량정보인식 및 자동과금시스템을 제안하였다. 제안한 알고리즘은 차량 후면부에서 획득된 영상으로부터 잡음제거, 세선화 등의 전처리 과정을 수행하고 템플릿 마스킹 및 레이블링 연산처리를 수행하여 차량표시문자, 제조사 표식자 및 번호판 영역을 각각 검출하였다. 또한, 검출된 특징 영역으로부터 특징자의 구조적 특징 및 패턴정보를 이용하여 표시문자와 제조사 표식자를 분류하였고, 하이브리드 패턴벡터와 세븐세그먼트 패턴벡터를 사용하여 차량번호판의 문자 및 숫자를 각각 인식하였다. 실험에서는 실제 고속도로상에서 제안한 차량인식 시스템에서 획득된 실 영상을 사용하여 인식 성능을 수행하였다. 실험 결과 제안한 알고리즘이 잡음, 외부환경, 차량의 크기에 무관하게 차량 특징자를 정확히 검출 분류하였으며 제안한 시스템은 범죄차량 단속, 차량자동과금 및 관공서 등의 차량입출력 관리의 무인화에 적용이 가능하다.

  • PDF

심층 컨볼루션 신경망을 사용한 초분광 영상의 공간 분광학적 분류 기법 (HyperConv: spatio-spectral classication of hyperspectral images with deep convolutional neural networks)

  • 고세윤;전구;원중호
    • 응용통계연구
    • /
    • 제29권5호
    • /
    • pp.859-872
    • /
    • 2016
  • 초분광 영상 데이터는 픽셀마다 수백 개의 스펙트럼 밴드에 대한 정보가 주어지는 고차원 데이터로, 농업, 식품처리, 광물학, 물리학, 환경학, 지리학 등 광범위한 분야에 활용되고 있다. 그 중 하나는 토지 피복의 분류 문제인데, 이는 자연 재해 예방, 자연 자원 감시, 환경에 대한 정보 수집에 있어서 중요한 문제이다. 하지만 차원의 저주, 시공간적 변동성, 레이블된 데이터의 부족 때문에 토지 피복의 정확한 분류에는 어려움이 따른다. 이 논문에서는 이러한 문제를 해결하기 위해 컨볼루션 신경망에 기반한 새로운 심층 학습 구조를 제안한다. 제안된 구조는 원하는 지점 주변 픽셀의 정보를 컨볼루션 신경망을 통해 처리하고, 그 지점의 스펙트럼 정보를 강조하기 위해 컨볼루션 층의 출력과 스펙트럼 정보를 함께 소프트맥스 분류기의 입력으로 사용한다. 이 구조는 추가적인 특징 추출 과정을 필요로 하지 않고, 그래픽 처리 장치 등을 이용한 병렬화가 간편하다는 점에서 기존 방법들보다 유리하다. 실험 결과, 제안된 구조는 기존에 가장 좋은 성능을 보인 분류기와 비슷하거나 더 좋은 분류 정확도를 보여 좋은 일반화 성능을 보이는 것을 확인할 수 있었다.

적외선 영상을 위한 적응적 언샤프 마스킹을 이용한 초고해상도 알고리즘 (Super-resolution Algorithm Using Adaptive Unsharp Masking for Infra-red Images)

  • 김용준;송병철
    • 방송공학회논문지
    • /
    • 제21권2호
    • /
    • pp.180-191
    • /
    • 2016
  • 일반 가시광선 영상의 확대를 위한 알고리즘을 선명도가 떨어지는 적외선 영상에 적용시켰을 때 개선효과가 미흡한 문제점을 해결하기 위해 본 논문은 적외선 영상을 위한 영상 확대 알고리즘을 제안한다. 제안 알고리즘은 적외선 영상이 가시광선 영상에 비해 디테일이 적다는 특성과 에지 영역에 대해 사람이 시각적으로 민감하다는 특성을 고려하여 ADRC(Adaptive Dynamic Range Coding)와 같은 단순한 분류기법을 적용시켰으며, 에지 영역에 대해서만 알고리즘을 적용시켜 연산량을 절약한다. 또한 확대 영상의 선명도 개선을 위해 합성과정에서 전처리나 후처리를 추가시키는 방법 대신 학습과정에서 전처리를 추가하여 합성과정에서 연산량 증가 없이 확대 영상의 선명도를 개선하였다. 제안 알고리즘은 크게 학습과정과 합성과정으로 나뉜다. 이와 같은 방법으로 영상 확대 알고리즘을 수행하였을 때 최신의 영상확대 기법인 A+ (Anchored neighborhood regression)기법 대비 JNB(Just Noticeable Blur)수치가 평균 0.0201만큼 높은 결과를 확인할 수 있었다.

도로 CCTV 데이터를 활용한 딥러닝 기반 차량 이상 감지 (Deep Learning-based Vehicle Anomaly Detection using Road CCTV Data)

  • 신동훈;백지원;박찬홍;정경용
    • 한국융합학회논문지
    • /
    • 제12권2호
    • /
    • pp.1-6
    • /
    • 2021
  • 현대사회에서는 차량을 소유하는 사람들이 증가하면서 교통문제가 발생하고 있다. 특히 고속도로 교통사고 문제는 발생률이 낮지만 치사율은 높다. 따라서 차량의 이상을 탐지하는 기술이 연구되고 있다. 이 중에는 딥러닝을 이용한 차량 이상탐지 기술이 있다. 이는 사고 및 엔진고장으로 인한 정차차량 등의 차량 이상을 탐지한다. 그러나 도로에서 이상이 발생할 경우 운전자의 위치를 파악할 수 있어야 빠른 대처가 가능하다. 따라서 본 연구에서는 도로 CCTV 데이터를 활용한 딥러닝 기반 차량 이상 감지 방법을 제안한다. 제안하는 방법은 먼저 도로 CCTV 데이터를 전처리한다. 전처리는 배경 추출 알고리즘인 MOG2를 이용하여 배경과 전경을 분리한다. 전경은 변위가 존재하는 차량을 의미하며 도로 위에서 이상이 존재하는 차는 변위가 없어 배경으로 판단된다. 배경이 추출된 이미지는 이상을 탐지하기 위해 YOLOv4를 이용하여 객체를 탐지한다. 해당 차량은 이상이 있음으로 판단한다.

딥러닝을 이용한 자율 이륙 드론 알고리즘 제안 (Proposal of autonomous take-off drone algorithm using deep learning)

  • 이종구;장민석;이연식
    • 한국정보통신학회논문지
    • /
    • 제25권2호
    • /
    • pp.187-192
    • /
    • 2021
  • 본 연구는 객체 검출기를 이용하여 숲 혹은 그에 준하는 복잡한 환경에서의 이륙에 대한 시스템을 제안한다. 시뮬레이터에서 대각선상의 모터간 550mm의 길이를 갖는 쿼드콥터에 라즈베리파이를 장착하여 엣지 컴퓨팅 기반으로 실험을 진행한다. 학습에 사용될 이미지는 군산대학교 내부의 세 지점을 선정하여 640⁎480 사이즈의 이미지를 150장 내외 정도 획득하였으며, 이들을 흑백으로 변환한 다음, 127의 경계값을 두어 이진화 전처리를 하였다. 이후 SSD_Inception 모델을 학습 하였다. 시뮬레이션상에서 검증용 영상을 입력으로 학습한 모델을 통해 드론을 이륙시키는 실험 결과, 라벨을 이용하여 이륙했을 때와 유사한 궤적을 그려내었다.

Defect Diagnosis and Classification of Machine Parts Based on Deep Learning

  • Kim, Hyun-Tae;Lee, Sang-Hyeop;Wesonga, Sheilla;Park, Jang-Sik
    • 한국산업융합학회 논문집
    • /
    • 제25권2_1호
    • /
    • pp.177-184
    • /
    • 2022
  • The automatic defect sorting function of machinery parts is being introduced to the automation of the manufacturing process. In the final stage of automation of the manufacturing process, it is necessary to apply computer vision rather than human visual judgment to determine whether there is a defect. In this paper, we introduce a deep learning method to improve the classification performance of typical mechanical parts, such as welding parts, galvanized round plugs, and electro galvanized nuts, based on the results of experiments. In the case of poor welding, the method to further increase the depth of layer of the basic deep learning model was effective, and in the case of a circular plug, the surrounding data outside the defective target area affected it, so it could be solved through an appropriate pre-processing technique. Finally, in the case of a nut plated with zinc, since it receives data from multiple cameras due to its three-dimensional structure, it is greatly affected by lighting and has a problem in that it also affects the background image. To solve this problem, methods such as two-dimensional connectivity were applied in the object segmentation preprocessing process. Although the experiments suggested that the proposed methods are effective, most of the provided good/defective images data sets are relatively small, which may cause a learning balance problem of the deep learning model, so we plan to secure more data in the future.

다채널 근전도 기반 딥러닝 동작 인식을 활용한 손 재활 훈련시스템 개발 및 사용성 평가 (Development and Usability Evaluation of Hand Rehabilitation Training System Using Multi-Channel EMG-Based Deep Learning Hand Posture Recognition)

  • 안성무;이건희;김세진;배소정;이현주;오도창;태기식
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권5호
    • /
    • pp.361-368
    • /
    • 2022
  • The purpose of this study was to develop a hand rehabilitation training system for hemiplegic patients. We also tried to find out five hand postures (WF: Wrist Flexion, WE: Wrist Extension, BG: Ball Grip, HG: Hook Grip, RE: Rest) in real-time using multi-channel EMG-based deep learning. We performed a pre-processing method that converts to Spider Chart image data for the classification of hand movement from five test subjects (total 1,500 data sets) using Convolution Neural Networks (CNN) deep learning with an 8-channel armband. As a result of this study, the recognition accuracy was 92% for WF, 94% for WE, 76% for BG, 82% for HG, and 88% for RE. Also, ten physical therapists participated for the usability evaluation. The questionnaire consisted of 7 items of acceptance, interest, and satisfaction, and the mean and standard deviation were calculated by dividing each into a 5-point scale. As a result, high scores were obtained in immersion and interest in game (4.6±0.43), convenience of the device (4.9±0.30), and satisfaction after treatment (4.1±0.48). On the other hand, Conformity of intention for treatment (3.90±0.49) was relatively low. This is thought to be because the game play may be difficult depending on the degree of spasticity of the hemiplegic patient, and compensation may occur in patient with weakened target muscles. Therefore, it is necessary to develop a rehabilitation program suitable for the degree of disability of the patient.

심층 학습을 통한 암세포 광학영상 식별기법 (Identification of Multiple Cancer Cell Lines from Microscopic Images via Deep Learning)

  • 박진형;최세운
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.374-376
    • /
    • 2021
  • 임상에서 암 관련 질병의 확진을 위해 영상장비를 이용한 기초 진단 이후 추가적인 방법으로 생체검사 등을 이용한 병리적 검사가 필수적이다. 이러한 생체검사를 진행하기 위해서는 전문지식을 가진 종양학자, 임상병리사 등의 도움과 최소한의 소요시간은 확진을 위해 반드시 필요하다. 최근 들어, 인공지능을 활용한 암세포의 자동분류가 가능한 시스템 구축에 관련된 연구가 활발하게 진행되고 있다. 하지만, 이전 연구들은 한정된 알고리즘을 기반으로 하여 세포의 종류와 정확도에 한계를 보인다. 본 연구에서 심층 학습의 일종인 합성곱 신경망을 통해 총 4가지의 암세포를 식별하는 방법을 제안한다. 세포 배양을 통해 얻은 광학영상을 OpenCV를 사용하여 세포의 위치 식별 및 이미지 분할과 같은 전처리 수행 후, EfficientNet을 통해 학습하였다. 모델은 EfficientNet을 기준으로 다양한 hyper parameter를 사용하고, InceptionV3을 학습하여 성능을 비교분석 하였다. 그 결과 96.8%의 높은 정확도로 세포를 분류하는 결과를 보였으며, 이러한 분석방법은 암의 확진에 도움이 될 것으로 기대한다.

  • PDF