• Title/Summary/Keyword: Image pixel

Search Result 2,490, Processing Time 0.035 seconds

Motion Detection using Adaptive Background Image and A Net Model Pixel Space of Boundary Detection (적응적 배경영상과 그물형 픽셀 간격의 윤곽점 검출을 이용한 객체의 움직임 검출)

  • Lee Chang soo;Jun Moon seog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3C
    • /
    • pp.92-101
    • /
    • 2005
  • It is difficult to detect the accurate detection which leads the camera it moves follows in change of the noise or illumination and Also, it could be recognized with backgound if the object doesn't move during hours. In this paper, the proposed method is updating changed background image as much as N*M pixel mask as time goes on after get a difference between imput image and first background image. And checking image pixel can efficiently detect moving by computing fixed distance pixel instead of operate all pixel. Also, set up minimum area of object to use boundary point of object abstracted through checking image pixel and motion detect of object. Therefore motion detection is available as is fast and correct without doing checking image pixel every Dame. From experiment, the designed and implemented system showed high precision ratio in performance assessment more than 90 percents.

Dead Pixel Detection Method by Different Response at Hot & Cold Images for Infrared Camera

  • Ye, Seong-Eun;Kim, Bo-Mee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.1-7
    • /
    • 2018
  • In this paper, we propose soft dead pixels detection method by analysing different response at hot and cold images. Abnormal pixels are able to effect detecting a small target. It also makes confusing real target or not cause of changing target size. Almost exist abnormal pixels after image signal processing even if dead pixels are removed by dead pixel compensation are called soft dead pixels. They are showed defect in final image. So removing or compensating dead pixels are very important for detecting object. The key idea of this proposed method, detecting dead pixels, is that most of soft deads have different response characteristics between hot image and cold image. General infrared cameras do NUC to remove FPN. Working 2-reference NUC must be needed getting data, hot & cold images. The way which is proposed dead pixel detection is that we compare response, NUC gain, at each pixel about two different temperature images and find out dead pixels if the pixels exceed threshold about average gain of around pixels.

Enhancement of Color Images with Blue Sky Using Different Method for Sky and Non-Sky Regions

  • Ghimire, Deepak;Pant, Suresh Raj;Lee, Joonwhoan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.215-218
    • /
    • 2013
  • In this paper, we proposed a method for enhancement of color images with sky regions. The input image is converted into HSV space and then sky and non-sky regions are separated. For sky region, saturation enhancement is performed for each pixel based on the enhancement factor calculated from the average saturation of its local neighborhood. On the other hand, for the non-sky region, the enhancement is applied only on the luminance value (V) component of the HSV color image, which is performed in two steps. The luminance enhancement, which is also called as dynamic range compression, is carried out using nonlinear transfer function. Again, each pixel is further enhanced for the adjustment of the image contrast depending upon the center pixel and its neighborhood pixel values. At last, the original H and V component image and enhanced S component image for the sky region, and original H and S component image and enhanced V component image for the non-sky region are converted back to RGB image.

A Generalized Image Interpolation-based Reversible Data Hiding Scheme with High Embedding Capacity and Image Quality

  • Tsai, Yuan-Yu;Chen, Jian-Ting;Kuo, Yin-Chi;Chan, Chi-Shiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3286-3301
    • /
    • 2014
  • Jung and Yoo proposed the first image interpolation-based reversible data hiding algorithm. Although their algorithm achieved superior interpolation results, the embedding capacity was insufficient. Lee and Huang proposed an improved algorithm to enhance the embedding capacity and the interpolation results. However, these algorithms present limitations to magnify the original image to any resolution and pixels in the boundary region of the magnified image are poorly manipulated. Furthermore, the capacity and the image quality can be improved further. This study modifies the pixel mapping scheme and adopts a bilinear interpolation to solve boundary artifacts. The modified reference pixel determination and an optimal pixel adjustment process can effectively enhance the embedding capacity and the image quality. The experimental results show our proposed algorithm achieves a higher embedding capacity under acceptable visual distortions, and can be applied to a magnified image at any resolution. Our proposed technique is feasible in reversible data hiding.

Averaging Current Adjustment Technique for Reducing Pixel Resistance Variation in a Bolometer-Type Uncooled Infrared Image Sensor

  • Kim, Sang-Hwan;Choi, Byoung-Soo;Lee, Jimin;Lee, Junwoo;Park, Jae-Hyoun;Lee, Kyoung-Il;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.357-361
    • /
    • 2018
  • This paper presents an averaging current adjustment technique for reducing the pixel resistance variation in a bolometer-type uncooled infrared image sensor. Each unit pixel was composed of an active pixel, a reference pixel for the averaging current adjustment technique, and a calibration circuit. The reference pixel was integrated with a polysilicon resistor using a standard complementary metal-oxide-semiconductor (CMOS) process, and the active pixel was applied from outside of the chip. The averaging current adjustment technique was designed by using the reference pixel. The entire circuit was implemented on a chip that was composed of a reference pixel array for the averaging current adjustment technique, a calibration circuit, and readout circuits. The proposed reference pixel array for the averaging current adjustment technique, calibration circuit, and readout circuit were designed and fabricated by a $0.35-{\mu}m$ standard CMOS process.

An Image Processing System for Measuring the Weight of A Dairy Cattle (젖소 체중측정을 위한 영상처리 시스템)

  • 이대원;김현태
    • Journal of Animal Environmental Science
    • /
    • v.7 no.3
    • /
    • pp.183-190
    • /
    • 2001
  • The objective of this research was to design and construct an image processing system to measure easily and accurately cow's weight. The image processing system was built for a dairy cattle to be measured and estimated it's weight using camera and personal computer. The pixel numbers, which was derived from the image processing system, were counted to estimate the weight of a dairy cattle. They were utilized various was for finding the relationships between pixel numbers and it's real weight. Based on the results of this research the following conclusions were made: 1. It's weight could be estimated by using pixel numbers, which was captured from top and side cameras to measure it. The correlations with tea-view pixel numbers, side-view pixel numbers, superficial area pixel numbers and the volume pixel numbers were 0.909, 0.939, 0.944 and 0.965. 2. 50 cattle was used to execute an experiment with the image processing system, but average errors were big to make out the good relationship between cow's weight and pixel numbers. In order measure accurately a cattle weight, cattle weight, cattle groups would be divided by the age of cattle and further study should be carried out to be based on the results of this research. 3. The average time it took to perform the image processing to be measure it was 10 seconds, but it took 10 minutes for cattle to enter for measuring it's weight into the weighting system.

  • PDF

A Pixel Structure for Reflective Color TFT-LCDs with 27-color in Still-Image

  • Jang, Dae-Jung;Sung, Yoo-Chang;Kwon, Oh-Kyong;Kim, Hyun-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.153-156
    • /
    • 2002
  • We have developed a pixel structure for reflective color TFT-LCD which can display 27-color in still-image. The proposed pixel can display 3 gray scale in still image; white, black and median gray. This paper shows the concept and the driving method of the proposed pixel. Finally this paper compares power consumption and area with the Toshiba's DMOG technology.

  • PDF

Noise Analysis of Nonlinear Image Sensor Model with Application to SNR Estimation (위성용 카메라 비선형 모델의 잡음 특성 분석과 영상 신호-잡음비(Image SNR) 분포도 계산)

  • Myung, Hwan-Chun;Lee, Sang-Kon
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.58-65
    • /
    • 2009
  • The paper identifies noise characteristics of a nonliner image sensor model which reflects a saturation effect of each detector pixel and extends the result to estimate an image SNR (Signla-to-Noise Ratio) distribution over all the pixels in a detector. In particular, nonlinearity of a pixel is studied from two perspectives of including asymmetry of a noise PDF (Probability Distribution Function) and enhancing a pixel SNR value, in comparison to a linear model. It is noted that the proposed image SNR distribution function is useful to effectively select new optimal operation parameter values: an integration time and an pixel-summing number, even after a launch campaign, assuming sensor gain degradation in orbit or inevitable modification of some operation parameter values due to space contingency.

  • PDF

Estimation of Disparity for Depth Extraction in Monochrome CMOS Image Sensors with Offset Pixel Apertures (깊이 정보 추출을 위한 오프셋 화소 조리개가 적용된 단색 CMOS 이미지 센서의 디스패리티 추정)

  • Lee, Jimin;Kim, Sang-Hwan;Kwen, Hyeunwoo;Chang, Seunghyuk;Park, JongHo;Lee, Sang-Jin;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.123-127
    • /
    • 2020
  • In this paper, the estimation of the disparity for depth extraction in monochrome complementary metal-oxide-semiconductor (CMOS) image sensors with offset pixel apertures is presented. To obtain the depth information, the disparity information between two different channel data of the offset pixel apertures is required. The disparity is caused by the difference in the response angle between the left- and right-offset pixel aperture images. A depth map is implemented by the generated disparity. Therefore, the disparity is the most important factor for realizing 3D images from the designed CMOS image sensor with offset pixel apertures. The disparity is influenced by the pixel height and offset value of the offset pixel aperture. To confirm this correlation, the offset value is set to maximum within the pixel area, and the disparity values corresponding to the difference in the heights are calculated and compared. The disparity is derived using the camera-lens formula. Two monochrome CMOS image sensors with offset pixel apertures are used in the disparity estimation.

Elemental Image Generation Method with the Correction of Mismatch Error by Sub-pixel Sampling between Lens and Pixel in Integral Imaging

  • Kim, Jonghyun;Jung, Jae-Hyun;Hong, Jisoo;Yeom, Jiwoon;Lee, Byoungho
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • We propose a subpixel scale elemental image generation method to correct the errors created by finite display pixel size in integral imaging. In this paper, two errors are mainly discussed: pickup-and-display mismatch error and mismatch error between pixel pitch and lens pitch. The proposed method considers the relative positions between lenses and pixels in subpixel scale. Our proposed pickup method calculates the position parameters, generates an elemental image with pixels completely inside the lens, and generates an elemental image with border pixels using a weighted sum method. Appropriate experiments are presented to verify the validity of the proposed method.