In this paper, we propose an efficient edge preserving smoothing filter for Infrared image that can reduce noise while preserving edge information. Infrared images suffer from low signal-to-noise ratio, low edge detail information and low contrast. So, detail enhancement and noise reduction play crucial roles in infrared image processing. We first apply a guided image filter as a local analysis. After the filtering process, we optimization globally using relativity of guided image filter. Our method outperforms the previous methods in removing the noise while preserving edge information and detail enhancement.
한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
/
pp.745-749
/
1998
Mathematical morphology (MM) has been introduced as a powerful tool for studying the geometrical properties of images, MM is a good approach to digital image processing , which is based on the shape feature. The MM operators such as dilation, erosion, closing and opening have been applied successfully to image noise reduction. The MM filters can easily filter the noise when the noise factors are known. However it is very difficult to reduce the noise when images are ambiguous, because the boundary between the noise and object is vague. In this paper, we propose a new method to reduce noise from ambiguous images by using Fuzzy Mathematical Morphology (FMM) operators. Performance evaluation via simulations show that the FMM filters efficiently reduce the image noise. Furthermore, the FMM filters show a good performance compared with the conventional filters.
Journal of information and communication convergence engineering
/
제6권1호
/
pp.80-85
/
2008
Images are often corrupted by noises during signal acquisition and transmission. Among those noises, additive white Gaussian noise (AWGN) and impulse noise are most representative. For different types of noise have different characters, how to remove them separately from degraded image is one of the most fundamental problems. Thus, a modified image restoration algorithm is proposed in this paper, which can not only remove impulse noise of random values, but also remove the AWGN selectively. The noise detection step is by calculating the intensity difference and the spatial distance between pixels in a mask. To divide two different noises, the method is based on three weighted parameters. And the weighted parameters in the filtering mask depend on spatial distances, positions of impulse noise and standard deviation of AWGN. We also use the peak signal-to-noise ratio (PSNR) to evaluate restoration performance, and simulation results demonstrate that the proposed method performs better than conventional median-type filters, in preserving edge details.
Salt and pepper is a type of impulse noise. It may appear due to an error in the image transmission process and image storage memory. This noise changes the pixel value at any position in the image to 0 (in case of pepper noise) or 255 (in case of salt noise). In this paper, we present an algorithm for SAP noise reduction. The proposed method consists of three steps. In the first step, the location of the SAP noise is detected, and in the second step, the pixel value of the detected location is restored using a weighted average of the surrounding pixel values. In the last step, a reliability matrix around the reconstructed pixels is constructed, and additional correction is performed with a weighted average using this. As a result of the experiment, the proposed method appears to have similar or higher objective and subjective image quality than previous methods for almost all SAP noise ratios.
Hyperspectral images feature a relatively narrow band and are easily disturbed by noise. Accurate estimation of the types and parameters of noise in hyperspectral images can provide prior knowledge for subsequent image processing. Existing hyperspectral-noise estimation methods often pay more attention to the use of spectral information while ignoring the spatial information of hyperspectral images. To evaluate the noise in hyperspectral images more accurately, we have proposed a spectral-spatial cooperative noise-evaluation method. First, the feature of spatial information was extracted by Gabor-filter and K-means algorithms. Then, texture edges were extracted by the Otsu threshold algorithm, and homogeneous image blocks were automatically separated. After that, signal and noise values for each pixel in homogeneous blocks were split with a multiple-linear-regression model. By experiments with both simulated and real hyperspectral images, the proposed method was demonstrated to be effective and accurate, and the composition of the hyperspectral image was verified.
Detecting edges is one of issues with essentialimprotance in the area of image analysis. An edge in an image is a boundary or contour at which a significant change occurs in image intensity. Edge detection has been studied in many addlications such as imagesegmentation, robot vision, and image compression. In this paper, we propose an automatic threshold selection scheme for edge detection and show its application to noise elimination. The scheme suggested here applied statistical properties of the noise estimated from a noisy image to threshold selection. Since a selected threshold value in the scheme depends on not the characgreistic of an orginal image but the statistical feature of added noise, we can remove ad-hoc manners used for selecting the threshold value as well as decide the value theoretically. Furthermore, that shceme can reduce the number of edge pixels either generated or lost by noise. an application of the scheme to noise elimination is shown here. Noise in the input image can be eliminated with considering the direction of each edge pixedl on the edge map obtained by applying the threshold selection scheme proposed in this paper. Achieving significantly improved results in terms of SNR as well as subjective quality, we can claim that the suggested method works well.
In this paper, the SEM image processing system based on PC is designed, and a new noise reduction filtering algorithm is proposed. The SEM image obtained in semiconductor processing line is sensitive to noise, the weighted-D filter can remove uniform and Gaussian noise effectively, but can not remove impulse noise properly, A new improved filtering algorithm is proposed to reduce mixed-noise. The performance of the proposed filter is quantitatively evaluated by use of the normalized mean square errors (NMSE). The experimental results show that the performance of the proposed filter is obtained between 0.96 and 2.5 times better than that of weighted-D filter in NMSE evaluation.
대사성 골 질환인 골다공증(Osteoporosis)의 조기 진단을 위해 X 선 영상에서 골 밀도를 측정하는 방법이 최근 연구되고 있다. 골 밀도는 X 선 영상에서 뼈가 분리되고, 분리된 영역에서의 픽셀에 의해 BMD가 측정되는데, 개선된 영상에서의 정밀한 뼈 추출이 주요한 요소이므로 X 선 영상의 개선은 골다공증의 조기 진단을 위해 필수적이다. 본 논문에서는 sparse 표현을 도입하여 다중(multiple) 잡음을 갖는 X 선 영상을 개선시키는 방법을 제안한다. 실험을 통해 제안한 방법의 결과가 기존의 방법인 웨이블릿 BayesShrink 잡음 제거 방법 및 일반적 sparse 표현 모델의 잡음 제거 방법의 결과에 비해 개선됨을 CNR(Contrast to Noise Ratio) 및 cut-view를 통해 확인하였다.
The filter technique was applied to noise images, as noise is the significant factor that cause poor image quality due to lower photon counting. The purpose of this study is to confirm that image quality can be improved using the median modified Wiener filter (MMWF) technique; this is achieved via a National Electrical Manufacturers Association International Electrotechnical Commission body phantom with four large spheres that are filled with the 99mTc radioisotope when evaluating the image quality. Conventional filters such as Wiener, Gaussian, and median filters were designed, and signal to noise ratio, coefficient of variation, and contrast to noise ratio were used as the evaluation parameters. The improvement in the image quality was in the following order, from the least to the highest improvement, in all cases: Wiener filter, Gaussian filter, median filter, and the MMWF technique. The results show that the image quality was improved from 20.6 to 65.5%, 7.4-40.3%, and 12.7-44.7% for the SNR, COV, and CNR values, respectively, when using the MMWF technique, compared with the use of conventional filters. In conclusion, our results demonstrated that the MMWF technique is useful for reducing the noise distribution in gamma camera images.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권8호
/
pp.2928-2947
/
2015
Adaptive Gaussian filter (AGF) is a recently developed switching filter to remove salt and pepper noise. AGF first directly identifies pixels of gray levels 0 and 255 as noise pixels, and then only restored noise pixels using a Gaussian filter with adaptive variance based on the estimated noise density. AGF usually achieves better denoising effect in comparison with other filters. However, AGF still fails to obtain good denoising effect on images with noise-free pixels of gray levels 0 and 255, due to its severe false alarm in its noise detection stage. To alleviate this issue, a modified version of AGF is proposed in this paper. Specifically, the proposed filter first performs noise detection via an image block based noise density estimation and sequential noise density guided rectification on the noise detection result of AGF. Then, a modified Gaussian filter with adaptive variance and window size is used to restore the detected noise pixels. The proposed filter has been extensively evaluated on two representative grayscale images and the Berkeley image dataset BSDS300 with 300 images. Experimental results showed that the proposed filter achieved better denoising effect over the state-of-the-art filters, especially on images with noise-free pixels of gray levels 0 and 255.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.