• Title/Summary/Keyword: Image noise

Search Result 3,336, Processing Time 0.03 seconds

A Modified Adaptive Switching Median Filter for Image Restoration (영상복원(映像復原)을 위한 변형(變形)된 적응(適應) 스위칭 메디안 필터)

  • Jin, Bo;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1373-1379
    • /
    • 2007
  • A modified adaptive switching median filter for impulse noise removal, which has the noise detection step and the noise filtering step, is proposed in this paper. In the noise detection step, we use the detection threshold which is earned by calculating the intensity differences between pixels nearby with each other in localized window, to determine whether the pixels in the image are noise or not. Then in the noise filtering step, we will only remove the corrupted pixels and remain the good pixels. By the noise detection result, we can easily get the local noise density of the image, and use it to consider the filtering mask size and the times of filtering iteration according to different localized noise corruptions. For Setting the simulation result, we compared the proposed method to conventional median filters with several test images corrupted by various impulse noise densities. We also use the peak signal-to-noise ratio (PSNR) to evaluate restoration performance, the simulation results demonstrate that the proposed method shows better results than other median-based type filters.

Noise Removal using Fuzzy Mask Filter (퍼지 마스크 필터를 이용한 잡음 제거)

  • Lee, Sang-Jun;Yoon, Seok-Hyun;Kim, Kwang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.41-45
    • /
    • 2010
  • Image processing techniques are fundamental in human vision-based image information processing. There have been widely studied areas such as image transformation, image enhancement, image restoration, and image compression. One of research subgoals in those areas is enhancing image information for the correct information retrieval. As a fundamental task for the image recognition and interpretation, image enhancement includes noise filtering techniques. Conventional filtering algorithms may have high noise removal rate but usually have difficulty in conserving boundary information. As a result, they often use additional image processing algorithms in compensation for the tradeoff of more CPU time and higher possibility of information loss. In this paper, we propose a Fuzzy Mask Filtering algorithm that has high noise removal rate but lesser problems in above-mentioned side-effects. Our algorithm firstly decides a threshold based on fuzzy logic with information from masks. Then it decides the output pixel value by that threshold. In a designed experiment that has random impulse noise and salt pepper noise, the proposed algorithm was more effective in noise removal without information loss.

Depth Image Based Feature Detection Method Using Hybrid Filter (융합형 필터를 이용한 깊이 영상 기반 특징점 검출 기법)

  • Jeon, Yong-Tae;Lee, Hyun;Choi, Jae-Sung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.6
    • /
    • pp.395-403
    • /
    • 2017
  • Image processing for object detection and identification has been studied for supply chain management application with various approaches. Among them, feature pointed detection algorithm is used to track an object or to recognize a position in automated supply chain systems and a depth image based feature point detection is recently highlighted in the application. The result of feature point detection is easily influenced by image noise. Also, the depth image has noise itself and it also affects to the accuracy of the detection results. In order to solve these problems, we propose a novel hybrid filtering mechanism for depth image based feature point detection, it shows better performance compared with conventional hybrid filtering mechanism.

Spatially Adaptive High-Resolution Denoising Based on Nonstationary Correlation Assumption (비정적 상관관계를 고려한 공간적응적 잡음제거 알고리즘)

  • 김창원;박성철;강문기
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1711-1714
    • /
    • 2003
  • The noise in an image degrades image quality and deteriorates coding efficiency of compression. Recently, various edge-preserving noise filtering methods based on the nonstationary image model have been proposed to overcome this problem. In most conventional nonstationary image models, however, pixels are assumed to be uncorrelated to each other In order not to increase the computational burden too much. As a result, some detailed information is lost in the filtered results. In this paper, we propose a computationally feasible adaptive noise smoothing algorithm which considers the nonstationary correlation characteristics of images. We assume that an image has a nonstationary mean and can be segmented into subimages which have individually different stationary correlations. Taking advantage of the special structure of the covariance matrix that results from the proposed image model, we derive a computationally efficient FFT-based adaptive linear minimum mean square error filter. The justification for the proposed image model is presented and the effectiveness of the proposed algorithm is demonstrated experimentally.

  • PDF

Comparison of Image Quality of the Amorphous Silicon DR System and the Film-screen Systems (비정질 실리콘 디지털 방사선 촬영기와 X-ray film과의 영상질 비교 평가)

  • Youn, Je-Woong;Lee, Hyoung-Koo;Suh, Tae-Suk;Choe, Bo-Young;Shin, Kyung-Sub;Mun, In-K.;Kim, Hong-Kwon;Han, Yong-Woo;Nam, Seung-Bae
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.3
    • /
    • pp.161-170
    • /
    • 1999
  • System performances in terms of image quality between an amorphous silicon DR system and a conventional film-screen system were evaluated. Various aspects of image quality MTF (modulation transfer function), NPS (noise power spectrum), SNR(signal-to-noise ratio) and contrast were measured and calculated. The MTF of the DR system was comparable to the film-screen systems. The noise was mainly dominated by the quantum mottle in both systems and the electronic noise was found in the DR system. The contrast of the DR system was better than the film-screen systems by virtue of high sensitivity and image processing. Compared to the film-screen systems in general radiography, the DR system had similar resolution and showed better contrast with the same exposure condition after contrast manipulation. The results of this study provide some useful information about the performance of the DR system in connection with medical applications.

  • PDF

S&P Noise Removal Filter Algorithm using Plane Equations (평면 방정식을 이용한 S&P 잡음제거 필터 알고리즘)

  • Young-Su, Chung;Nam-Ho, Kim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.47-53
    • /
    • 2023
  • Devices such as X-Ray, CT, MRI, scanners, etc. can generate S&P noise from several sources during the image acquisition process. Since S&P noise appearing in the image degrades the image quality, it is essential to use noise reduction technology in the image processing process. Various methods have already been proposed in research on S&P noise removal, but all of them have a problem of generating residual noise in an environment with high noise density. Therefore, this paper proposes a filtering algorithm based on a three-dimensional plane equation by setting the grayscale value of the image as a new axis. The proposed algorithm subdivides the local mask to design the three closest non-noisy pixels as effective pixels, and applies cosine similarity to a region with a plurality of pixels. In addition, even when the input pixel cannot form a plane, it is classified as an exception pixel to achieve excellent restoration without residual noise.

Impulse Noise Removal using Noise Density based Switching Mask Filter (잡음밀도 기반의 스위칭 마스크 필터를 사용한 임펄스 잡음 제거)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.253-255
    • /
    • 2022
  • Thanks to the 4th industrial revolution and the development of various communication media, technologies such as artificial intelligence and automation are being grafted into industrial sites in various fields, and accordingly, the importance of data processing is increasing. Image noise removal is a pre-processing process for image processing, and is mainly used in fields requiring high-level image processing technology. Various studies have been conducted to remove noise, but various problems arise in the process of noise removal, such as image detail preservation, texture restoration, and noise removal in a special area. In this paper, we propose a switching mask filter based on the noise intensity to preserve the detailed image information during the impulse noise removal process. The proposed filter algorithm obtains the final output by switching to the extended mask when it is determined that the density is higher than the reference value when noise is determined in the area designated as the filtering mask. Simulation was conducted to evaluate the performance of the proposed algorithm, and the performance was analyzed compared to the existing method.

  • PDF

Iterative Image Restoration Algorithm Using Power Spectral Density (전력밀도 스펙트럼을 이용한 반복적 영상 신호 복원 알고리즘)

  • 임영석;이문호
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.4
    • /
    • pp.713-718
    • /
    • 1987
  • In this paper, an iterative restoration algorithm from power spectral density with 1 bit sign information of real part of two dimensional Fourier transform of image corrupted by additive white Gaussian noise is proposed. This method is a modified version of image reconstruction algorithm from power spectral density. From the results of computer simulation with original 32 gray level imgae of 64x64 pixels, we can find that restorated image after each iteration converge to original image very fast, and SNR gain be at least 8[dB] after 10th iteration for corrupted image with additive white Gaussian noise.

  • PDF

Noise reduction by sigma filter applying orientations of feature in image (영상에 포함된 특징의 방향성을 적용한 시그마 필터의 잡음제거)

  • Kim, Yeong-Hwa;Park, Youngho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1127-1139
    • /
    • 2013
  • In the realization of obtained image by various visual equipments, the addition of noise to the original image is a common phenomenon and the occurrence of the noise is practically impossible to prevent completely. Thus, the noise detection and reduction is an important foundational purpose. In this study, we detect the orientation about feature of images and estimate the level of noise variance based on the measurement of the relative proportion of the noise. Also, we apply the estimated level of noise to the sigma filter on noise reduction algorithm. And using the orientation about feature of images by weighted value, we propose the effective algorithm to eliminate noise. As a result, the proposed statistical noise reduction methodology provides significantly improved results over the usual sigma filtering and regardless of the estimated level of the noise variance.

History Document Image Background Noise and Removal Methods

  • Ganchimeg, Ganbold
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.5 no.2
    • /
    • pp.11-24
    • /
    • 2015
  • It is common for archive libraries to provide public access to historical and ancient document image collections. It is common for such document images to require specialized processing in order to remove background noise and become more legible. Document images may be contaminated with noise during transmission, scanning or conversion to digital form. We can categorize noises by identifying their features and can search for similar patterns in a document image to choose appropriate methods for their removal. In this paper, we propose a hybrid binarization approach for improving the quality of old documents using a combination of global and local thresholding. This article also reviews noises that might appear in scanned document images and discusses some noise removal methods.