Journal of the Korea Institute of Information and Communication Engineering
/
v.4
no.2
/
pp.371-378
/
2000
In this study, we proposed pathological pattern detection system for X-ray chest image using artificial neural network. In a physical examination, radiologists have checked on the chest image projected the view box by a magnifying glass and found out what the disease is. Here, the detection of X-ray fluoroscopy is tedious and time-consuming for human doing. Lowering of efficiency for chest diagnosis is caused by lots mistakes of radiologist because of detecting the micro pathology from the film of small size. So, we proposed the method for disease detection using artificial neural network and digital image processing on a X-ray chest image. This method composes the function of image sampling, median filter, image equalizer used neural network and pattern recognition used neural network. We confirm this method has improved the problem of a conventional method.
Although many kinds of stereo matching method have been developed in the field of computer vision and photogrammetry, wrong matches are not easy to avoid. This paper presents a new method to reduce wrong matches after matching, and experimental results are reported. The main idea is to analyze the histogram of the image attribute differences between each pair of image patches matched. Typical image attributes of image patch are the mean and the standard deviation of gray value for each image patch, but there could be other kinds of image attributes. Another idea is to check relative position among potential matches. This paper proposes to use Gaussian blunder filter to detect the suspicious pair of candidate match in relative position among neighboring candidate matches. If the suspicious candidate matches in image attribute difference or relative position are suppressed, then many wrong matches are removed, but minimizing the suppression of good matches. The proposed method is easy to implement, and also has potential to be applied as post processing after image matching for many kinds of matching methods such as area based matching, feature matching, relaxation matching, dynamic programming, and multi-channel image matching. Results show that the proposed method produces fewer wrong matches than before.
International Journal of Naval Architecture and Ocean Engineering
/
v.6
no.4
/
pp.840-866
/
2014
Visibility in underwater images is usually poor because of the attenuation of light in the water that causes low contrast and color variation. In this paper, a new approach for underwater image quality improvement is presented. The proposed method aims to improve underwater image contrast, increase image details, and reduce noise by applying a new method of using contrast stretching to produce two different images with different contrasts. The proposed method integrates the modification of the image histogram in two main color models, RGB and HSV. The histograms of the color channel in the RGB color model are modified and remapped to follow the Rayleigh distribution within certain ranges. The image is then converted to the HSV color model, and the S and V components are modified within a certain limit. Qualitative and quantitative analyses indicate that the proposed method outperforms other state-of-the-art methods in terms of contrast, details, and noise reduction. The image color also shows much improvement.
Image identification is the process of checking whether the query image is the transformed version of the specific original image or not. In this paper, image identification method based on feature composition is proposed. Used features include color distance, texture information and average pixel intensity. We extract color characteristics using color distance and texture information by Modified Generalized Symmetry Transform as well as average intensity of each pixel as features. Individual feature is quantized adaptively to be used as bins of histogram. The histogram is normalized according to data type and it is used as the signature in comparing the query image with database images. In matching part, Manhattan distance is used for measuring distance between two signatures. To evaluate the performance of the proposed method, independent test and accuracy test are achieved. In independent test, 60,433 images are used to evaluate the ability of discrimination between different images. And 4,002 original images and its 29 transformed versions are used in accuracy test, which evaluate the ability that the proposed algorithm can find the original image correctly when some transforms was applied in original image. Experiment results show that the proposed identification method has good performance in accuracy test. And the proposed method is very useful in real environment because of its high accuracy and fast matching capacity.
In this paper, an implementation method of the efficient image transmission stage using watermarking and channel ceding is proposed. Usually, image communication system consists of both a transmitter part and a receiver part. The transmitter part takes charge of copyright protection of the generated image data, and image coding and compression that can deal with channel noises when transmitting. In the transmitter part, we propose a channel coding method which protects both the watermark signal and the original signal for protecting the copyright of image data and solving channel noises when transmitting. Firstly, copyright protection of image data is conducted. For this, image structure analysis is performed, and both the improvement of image quality and the generation of the watermark signal are made. Then, the histogram is constructed and the watermark signals are selected from this. At this stage, by embedding of the coefficients of curve fittness into the lower 4 bits of the image data pixels, image quality degradation due to the embedding of watermark signals are prevented. Finally, turbo coding, which has the most efficient error correction capability in error correction codes, has been conducted to protect signals of watermark and preserved original image quality against noises on the transmission channel. Particularly, a new interleaving method named "semi random inter]easer" has been proposed.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2009.05a
/
pp.657-660
/
2009
An image interpolation is a basis technique for various image processing and is required to minimize approaches for image quality deterioration. In this paper, we propose an improved bilinear interpolation using loss information estimation. In the proposed algorithm, we estimate loss information of low resolution image using down-sampling and interpolation of acquisition low resolution. The estimated loss information is utilized interpolated image, and it decrease image quality deterioration. Our experiments obtained the average PSNR 0.97~1.79dB which is improved results better than conventional method for sensitive image quality. Also, subjective image quality with edge region is more clearness. The proposed method may be helpful for applications in various multimedia systems such as image resolution enhancement and image restoration.
Purpose: The brain perfusion SPECT is the examination which is able to know adversity information related brain disorder. But brain perfusion SPECT has also high failure rates by patient's motions. In this case, we have to use two days method and patients put up with many disadvantages. We think that we don't use two days method in brain perfusion SPECT, if we can use registration method. So this study has led to look over registration method applications in brain perfusion SPECT. Materials and Methods: Jaszczak, Hoffman and cylindrical phantoms were used for acquiring SPECT image data on varying degree in x, y, z axes. The phantoms were filled with $^{99m}Tc$ solution that consisted of a radioactive concentration of 111 MBq/mL. Phantom images were acquired through scanning for 5 sec long per frame by using Triad XLT9 triple head gamma camera (TRIONIX, USA). We painted the ROI of registration image in brain data. So we calculated the ROIratio which was different original image counts and registration image counts. Results: When carring out the experiments under the same condition, total counts differential was from 3.5% to 5.7% (mean counts was from 3.4% to 6.8%) in phantom and patients data. In addition, we also run the experiments in the double activity condition. Total counts differential was from 2.6% to 4.9% (mean counts was from 4.1% to 4.9%) in phantom and patients data. Conclusion: We can know that original and registration data are little different in image analysis. If we use the image registration method, we can improve disadvantage of two days method in brain perfusion SPECT. But we must consider image registration about the distance differences in x, y, z axes.
In this paper, DLKF (Deep Learning Keypoint Filtering), the deep learning-based keypoint filtering method for the rapidization of the image registration method for remote sensing images is proposed. The complexity of the conventional feature-based image registration method arises during the feature matching step. To reduce this complexity, this paper proposes to filter only the keypoints detected in the artificial structure among the keypoints detected in the keypoint detector by ensuring that the feature matching is matched with the keypoints detected in the artificial structure of the image. For reducing the number of keypoints points as preserving essential keypoints, we preserve keypoints adjacent to the boundaries of the artificial structure, and use reduced images, and crop image patches overlapping to eliminate noise from the patch boundary as a result of the image segmentation method. the proposed method improves the speed and accuracy of registration. To verify the performance of DLKF, the speed and accuracy of the conventional keypoints extraction method were compared using the remote sensing image of KOMPSAT-3 satellite. Based on the SIFT-based registration method, which is commonly used in households, the SURF-based registration method, which improved the speed of the SIFT method, improved the speed by 2.6 times while reducing the number of keypoints by about 18%, but the accuracy decreased from 3.42 to 5.43. Became. However, when the proposed method, DLKF, was used, the number of keypoints was reduced by about 82%, improving the speed by about 20.5 times, while reducing the accuracy to 4.51.
In digital image correlation, speckle image is closely related to the measurement accuracy. A practical global evaluation criterion for speckle image is presented. Firstly, based on the essential factors of the texture image, both the average particle size and image sharpness are used for the assessment of speckle image. The former is calculated by a simplified auto-covariance function and Gaussian fitting, and the latter by focusing function. Secondly, the computation of the average particle size and image sharpness is verified by numerical simulation. The influence of these two evaluation parameters on mean deviation and standard deviation is discussed. Then, a physical model from speckle projection to image acquisition is established. The two evaluation parameters can be mapped to the physical devices, which demonstrate that the proposed evaluation method is reasonable. Finally, the engineering application of the evaluation method is pointed out.
This study presents a method to segment an image, employing the statistics observed at each pixel location across sequential frame images. In the acquisition and analysis of spatial information, utilization of digital image processing technique has very important implications. Various image segmentation techniques have been presented to distinguish the area of digital images. In this study, based on the analysis of the spectroscopic characteristics of sequential frame images that had been previously researched, an image segmentation method was proposed by using the randomness occurring among a sequence of frame images for a same scene. First of all, we computed the mean and standard deviation values at each pixel and found reliable pixels to determine seed points using their standard deviation value. For segmenting an image into individual regions, we conducted region growing based on a T-test between reference and candidate sample sets. A comparative analysis was conducted to assure the performance of the proposed method with reference to a previous method. From a set of experimental results, it is confirmed that the proposed method using a sequence of frame images segments a scene better than a method using a single frame image.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.