• Title/Summary/Keyword: Image information measure

Search Result 805, Processing Time 0.032 seconds

Adaptive Target Detection Algorithm Using Gray Difference, Similarity and Adjacency (밝기 차, 유사성, 근접성을 이용한 적응적 표적 검출 알고리즘)

  • Lee, Eun-Young;Gu, Eun-Hye;Yoo, Hyun-Jung;Park, Kil-Houm
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.9
    • /
    • pp.736-743
    • /
    • 2013
  • In IRST(infrared search and track) system, the small target detection is very difficult because the IR(infrared) image have various clutter and sensor noise. The noise and clutter similar to the target intensity value produce many false alarms. In this paper. We propose the adaptive detection method which obtains optimal target detection using the image intensity information and the prior information of target. In order to enhance the target, we apply the human visual system. we determine the adaptive threshold value using image intensity and distance measure in target enhancement image. The experimental results indicate that the proposed method can efficiently extract target region in various IR images.

Contents-based Image Retrieval Using Color & Edge Information (칼라와 에지 정보를 이용한 내용기반 영상 검색)

  • Park, Dong-Won;An, Syungog;Ma, Ming;Singh, Kulwinder
    • The Journal of Korean Association of Computer Education
    • /
    • v.8 no.1
    • /
    • pp.81-91
    • /
    • 2005
  • In this paper we present a novel approach for image retrieval using color and edge information. We take into account the HSI(Hue, Saturation and Intensity) color space instead of RGB space, which emphasizes more on visual perception. In our system colors in an image are clustered into a small number of representative colors. The color feature descriptor consists of the representative colors and their percentages in the image. An improved cumulative color histogram distance measure is defined for this descriptor. And also, we have developed an efficient edge detection technique as an optional feature to our retrieval system in order to surmount the weakness of color feature. During the query processing, both the features (color, edge information) could be integrated for image retrieval as well as a standalone entity, by specifying it in a certain proportion. The content-based retrieval system is tested to be effective in terms of retrieval and scalability through experimental results and precision-recall analysis.

  • PDF

Region-based Image Retrieval using Wavelet Transform and Image Segmentation (웨이브릿 변환과 영상 분할을 이용한 영역기반 영상 검색)

  • 이상훈;홍충선;곽윤식;이대영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.8B
    • /
    • pp.1391-1399
    • /
    • 2000
  • In this paper, we discussed the region-based image retrieval method using image segmentation. We proposed a segmentation method which can reduce the effect of a irregular light sources. The image segmentation method uses a region-merging, and candidate regions which are merged were selected by the energy values of high frequency bands in discrete wavelet transform. The content-based image retrieval is executed by using the segmented region information, and the images are retrieved by a color, texture, shape feature vector. The similarity measure between regions is processed by the Euclidean distance of the feature vectors. The simulation results shows that the proposed method is reasonable.

  • PDF

A Study on Extraction Depth Information Using a Non-parallel Axis Image (사각영상을 이용한 물체의 고도정보 추출에 관한 연구)

  • 이우영;엄기문;박찬응;이쾌희
    • Korean Journal of Remote Sensing
    • /
    • v.9 no.2
    • /
    • pp.7-19
    • /
    • 1993
  • In stereo vision, when we use two parallel axis images, small portion of object is contained and B/H(Base-line to Height) ratio is limited due to the size of object and depth information is inaccurate. To overcome these difficulities we take a non-parallel axis image which is rotated $\theta$ about y-axis and match other parallel-axis image. Epipolar lines of non-parallel axis image are not same as those of parallel-axis image and we can't match these two images directly. In this paper, we transform the non-parallel axis image geometrically with camera parameters, whose epipolar lines are alingned parallel. NCC(Normalized Cross Correlation) is used as match measure, area-based matching technique is used find correspondence and 9$\times$9 window size is used, which is chosen experimentally. Focal length which is necessary to get depth information of given object is calculated with least-squares method by CCD camera characteristics and lenz property. Finally, we select 30 test points from given object whose elevation is varied to 150 mm, calculate heights and know that height RMS error is 7.9 mm.

Video Sequence Matching Using Normalized Dominant Singular Values

  • Jeong, Kwang-Min;Lee, Joon-Jae
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.6
    • /
    • pp.785-793
    • /
    • 2009
  • This paper proposes a signature using dominant singular values for video sequence matching. By considering the input image as matrix A, a partition procedure is first performed to separate the matrix into non-overlapping sub-images of a fixed size. The SVD(Singular Value Decomposition) process decomposes matrix A into a singular value-singular vector factorization. As a result, singular values are obtained for each sub-image, then k dominant singular values which are sufficient to discriminate between different images and are robust to image size variation, are chosen and normalized as the signature for each block in an image frame for matching between the reference video clip and the query one. Experimental results show that the proposed video signature has a better performance than ordinal signature in ROC curve.

  • PDF

A New Effective Measure of the Block Effect in Still Images and Moving Pictures (정지영상 및 동영상에서의 효율적인 블록효과 측정방법)

  • 김문성;정진구
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.4
    • /
    • pp.102-107
    • /
    • 2002
  • Compression coding based on block coding has been applied in image and video compression standard. But there is no block effect measurement due to block based image coding. In this paper, we propose a objective block effects measurement to reconstructed image using subblock DCT coding. Experimental results show that the block effects measures given by the suggested method agree well with the subjective ranking. This new objective measurement is simple and effective in measuring the block effect in the reconstructed image.

  • PDF

Video image retrieval on the basis of subregional co-occurrence matrix texture features and normalised correlation (PIM 기반 국부적 Co-occurrence 행렬 및 normalised correlation를 이용한 효율적 비디오 검색 방법)

  • 김규헌;정세윤;전병태;이재연;배영래
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.601-604
    • /
    • 1999
  • This Paper proposes the simple and efficient image retrieval algorithm using subregional texture features. In order to retrieve images in terms of its contents, it is required to obtain a precise segmentation. However, it is very difficult and takes a long computing time. Therefore. this paper proposes a simple segmentation method, which is to divide an image into high and low entropy regions by using Picture Information Measure (PIM). Also, in order to describe texture characteristics of each region, this paper suggest six different texture features produced on the basis of co-occurrence matrix. For an image retrieval system, a normalised correlation is adopted as a similarity function, which is not dependent on the range of each texture feature values. Finally, this proposed algorithm is applied to a various images and produces competitive results.

  • PDF

Optimization of Mutual Information for Multiresolution Image Registration (다해상도 영상정합을 위한 상호정보 최적화)

  • Hong, Helen;Kim, Myoung-Hee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.7 no.1
    • /
    • pp.37-49
    • /
    • 2001
  • We propose an optimization of mutual information for multiresolution image registration to represent useful information as integrated form obtaining from complementary information of multi modality images. The method applies mutual information as cost function to measure the statistical dependency or information redundancy between the image intensities of corresponding pixels in both images, which is assumed to be maximal if the images are geometrically aligned. As experimental results we validate visual inspection for accuracy, changning initial condition and addictive noise for robustness. Since our method uses the native image rather than prior feature extraction, few user interaction is required to perform the registration. In addition it leads to robust density estimation and convergence as applying non-parametric density estimation and stochastic multiresolution optimization.

  • PDF

Salient Region Extraction based on Global Contrast Enhancement and Saliency Cut for Image Information Recognition of the Visually Impaired

  • Yoon, Hongchan;Kim, Baek-Hyun;Mukhriddin, Mukhiddinov;Cho, Jinsoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2287-2312
    • /
    • 2018
  • Extracting key visual information from images containing natural scene is a challenging task and an important step for the visually impaired to recognize information based on tactile graphics. In this study, a novel method is proposed for extracting salient regions based on global contrast enhancement and saliency cuts in order to improve the process of recognizing images for the visually impaired. To accomplish this, an image enhancement technique is applied to natural scene images, and a saliency map is acquired to measure the color contrast of homogeneous regions against other areas of the image. The saliency maps also help automatic salient region extraction, referred to as saliency cuts, and assist in obtaining a binary mask of high quality. Finally, outer boundaries and inner edges are detected in images with natural scene to identify edges that are visually significant. Experimental results indicate that the method we propose in this paper extracts salient objects effectively and achieves remarkable performance compared to conventional methods. Our method offers benefits in extracting salient objects and generating simple but important edges from images containing natural scene and for providing information to the visually impaired.

Investigation of the super-resolution methods for vision based structural measurement

  • Wu, Lijun;Cai, Zhouwei;Lin, Chenghao;Chen, Zhicong;Cheng, Shuying;Lin, Peijie
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.287-301
    • /
    • 2022
  • The machine-vision based structural displacement measurement methods are widely used due to its flexible deployment and non-contact measurement characteristics. The accuracy of vision measurement is directly related to the image resolution. In the field of computer vision, super-resolution reconstruction is an emerging method to improve image resolution. Particularly, the deep-learning based image super-resolution methods have shown great potential for improving image resolution and thus the machine-vision based measurement. In this article, we firstly review the latest progress of several deep learning based super-resolution models, together with the public benchmark datasets and the performance evaluation index. Secondly, we construct a binocular visual measurement platform to measure the distances of the adjacent corners on a chessboard that is universally used as a target when measuring the structure displacement via machine-vision based approaches. And then, several typical deep learning based super resolution algorithms are employed to improve the visual measurement performance. Experimental results show that super-resolution reconstruction technology can improve the accuracy of distance measurement of adjacent corners. According to the experimental results, one can find that the measurement accuracy improvement of the super resolution algorithms is not consistent with the existing quantitative performance evaluation index. Lastly, the current challenges and future trends of super resolution algorithms for visual measurement applications are pointed out.