• Title/Summary/Keyword: Image improve

Search Result 3,604, Processing Time 0.033 seconds

A Basic Study on the Reduction of Illuminated Reflection for improving the Safety of Self-driving at Night (야간 자율주행 안전성 향상을 위한 조명반사광 감소에 관한 기초연구)

  • Park, Chang min
    • Journal of Platform Technology
    • /
    • v.10 no.3
    • /
    • pp.60-68
    • /
    • 2022
  • As AI-technology develops, interest in the safety of autonomous driving is increasing. Recently, autonomous vehicles have been increasing, but efforts to solve side effects have been sluggish. In particular, night autonomous vehicles have more problems. This is because the probability of accidents is higher in the night driving environment than in the day environment. There are more factors to consider for self-driving at night. Among these factors, reflection of light or reflected light of lighting may be a fundamental cause of night accidents. Therefore, this study proposes method to reduce accidents and improve safety by reducing reflected light generated by the headlights of opposite vehicles or various surrounding light that appear as an important problem in night autonomous vehicles. Therefore, first, in an image obtained by a sensor of a night autonomous vehicle, illumination reflected light is extracted using reflected light characteristic information, and a color of each pixel using a reflection coefficient is found to reduce a special area generated by geometric characteristics. In addition, we find a new area using only the brightness component of the specular area, define it as Illuminated Reflection Light (IRL), and finally present a method to reduce it. Although the illumination reflection light could not be completely reduce, generally satisfactory results could be obtained. Therefore, it is believed that the proposed study can reduce casualties by solving the problems of night autonomous driving and improving safety.

Learning Ability Prediction System for Developing Competence Based Curriculum: Focusing on the Case of D-University (역량중심 교육과정 개발을 위한 학업성취도 예측 시스템: D대학 사례를 중심으로)

  • Kim, Sungkook;Oh, Chang-Heon
    • Journal of Practical Engineering Education
    • /
    • v.14 no.2
    • /
    • pp.267-277
    • /
    • 2022
  • Achievement at university is recognized in a comprehensive sense as the level of qualitative change and development that students have embodied as a result of their experience in university education. Therefore, the academic achievement of university students will be given meaning in cooperation with the historical and social demands for diverse human resources such as creativity, leadership, and global ability, but it is practically an indicator of the outcome of university education. Measurement of academic achievement by such credits involves many problems, but in particular, standardization of academic achievement by credits based on evaluation methods, contents, and university rankings is a very difficult problem. In this study, we present a model that uses machine learning techniques to predict whether or not academic achievement is excellent for D-University graduates. The variables used were analyzed using up to 96 personal information and bachelor's information such as graduation year, department number, department name, etc., but when establishing a future education course, only the data after enrollment works effectively. Therefore, the items to be analyzed are limited to the recommended ability to improve the academic achievement of the department/student. In this research, we implemented an academic achievement prediction model through analysis of core abilities that reflect the philosophy, goals, human resources image, and utilized machine learning to affect the impact of the introduction of the prediction model on academic achievement. We plan to apply the results of future research to the establishment of curriculum and student guidance conducted in the department to establish a basis for improving academic achievement.

A Study for Analyzing the Outcome of the Accreditation System of the Extracurriculum: Focused on the Case of K University (비교과 인증제 성과 분석 연구: K 대학의 사례를 중심으로)

  • Lee, Seongah;Yoon, Hyeajin;Lim, Sua
    • Journal of Christian Education in Korea
    • /
    • v.69
    • /
    • pp.193-220
    • /
    • 2022
  • Competency cannot be transformed as knowledge, so the operation of competency-based curriculum requires support from the extracurriculum that gives many opportunities practical experience. Therefore, many universities establish the own extracurricular courses by using much financial, human, and physical infrastructure. However, it is doubtful whether the extracurriculum is effective on cultivating competencies, what kinds of programs is useful to nurture right abilities, how to assess the outcome of implementing of the extracurriculum. For these reason, the accreditation system, that awards to student who accomplish certain programs based on the given standard, has been used as the tool to manage outcome achieved by the extracurriculum. This study aimed to investigate the outcome of the accreditation system of K university in order to verify its effectiveness for cultivating competencies through the extracurriculum. Through the analysis of prior research, it could be inferred that students who achieved the accreditation system would be able to cultivate relevant competencies, improve major abilities, and instill a positive image of related administrative departments while participating in various programs. Thus, this study collected data of those who achieved the accreditation and did not by participating at least once in extracurricular program from March 2020 to February 2021 to compare their results of the diagnosis of core competencies and student circumstances, and survey of educational satisfaction and interpreted interviews of 10 students, excellent certifier. As a result, it was verified that the more evenly participating in various programs to achieve the accreditation system, the more diverse competency was obtained, and the satisfaction with the student support department and major education was improved.

A Case Study on the Application of AI-OCR for Data Transformation of Paper Records (종이기록 데이터화를 위한 AI-OCR 적용 사례연구)

  • Ahn, Sejin;Hwang, Hyunho;Yim, Jin Hee
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.3
    • /
    • pp.165-193
    • /
    • 2022
  • It can be said that digital technology is at the center of the change in the modern work environment. In particular, in general public institutions that prove their work with records produced by business management systems and document production systems, the record management system is also the work environment itself. Gimpo City applied for the 2021 public cloud leading project of the National Information Society Agency (NIA) to proactively respond to the 4th industrial revolution technology era and implemented a public cloud-based AI-OCR technology enhancement project with 330 million won in support of 330 million won. Through this, it was converted into data beyond the limitations of non-electronic records limited to search and image viewing that depend on standardized index values. In addition, a 98% recognition rate was realized by applying a new technology called AI-OCR. Since digital technology has been used to improve work efficiency, productivity, development cost, and record management service levels of internal and external users, we would like to share the direction of enhancing expertise in the record management and implementation of work environment innovation.

Comparison of Seismic Data Interpolation Performance using U-Net and cWGAN (U-Net과 cWGAN을 이용한 탄성파 탐사 자료 보간 성능 평가)

  • Yu, Jiyun;Yoon, Daeung
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.3
    • /
    • pp.140-161
    • /
    • 2022
  • Seismic data with missing traces are often obtained regularly or irregularly due to environmental and economic constraints in their acquisition. Accordingly, seismic data interpolation is an essential step in seismic data processing. Recently, research activity on machine learning-based seismic data interpolation has been flourishing. In particular, convolutional neural network (CNN) and generative adversarial network (GAN), which are widely used algorithms for super-resolution problem solving in the image processing field, are also used for seismic data interpolation. In this study, CNN-based algorithm, U-Net and GAN-based algorithm, and conditional Wasserstein GAN (cWGAN) were used as seismic data interpolation methods. The results and performances of the methods were evaluated thoroughly to find an optimal interpolation method, which reconstructs with high accuracy missing seismic data. The work process for model training and performance evaluation was divided into two cases (i.e., Cases I and II). In Case I, we trained the model using only the regularly sampled data with 50% missing traces. We evaluated the model performance by applying the trained model to a total of six different test datasets, which consisted of a combination of regular, irregular, and sampling ratios. In Case II, six different models were generated using the training datasets sampled in the same way as the six test datasets. The models were applied to the same test datasets used in Case I to compare the results. We found that cWGAN showed better prediction performance than U-Net with higher PSNR and SSIM. However, cWGAN generated additional noise to the prediction results; thus, an ensemble technique was performed to remove the noise and improve the accuracy. The cWGAN ensemble model removed successfully the noise and showed improved PSNR and SSIM compared with existing individual models.

Prediction of Music Generation on Time Series Using Bi-LSTM Model (Bi-LSTM 모델을 이용한 음악 생성 시계열 예측)

  • Kwangjin, Kim;Chilwoo, Lee
    • Smart Media Journal
    • /
    • v.11 no.10
    • /
    • pp.65-75
    • /
    • 2022
  • Deep learning is used as a creative tool that could overcome the limitations of existing analysis models and generate various types of results such as text, image, and music. In this paper, we propose a method necessary to preprocess audio data using the Niko's MIDI Pack sound source file as a data set and to generate music using Bi-LSTM. Based on the generated root note, the hidden layers are composed of multi-layers to create a new note suitable for the musical composition, and an attention mechanism is applied to the output gate of the decoder to apply the weight of the factors that affect the data input from the encoder. Setting variables such as loss function and optimization method are applied as parameters for improving the LSTM model. The proposed model is a multi-channel Bi-LSTM with attention that applies notes pitch generated from separating treble clef and bass clef, length of notes, rests, length of rests, and chords to improve the efficiency and prediction of MIDI deep learning process. The results of the learning generate a sound that matches the development of music scale distinct from noise, and we are aiming to contribute to generating a harmonistic stable music.

A Study on Estimating the Crossing Speed of Mobility Handicapped for the Activation of the Smart Crossing System (스마트횡단시스템 활성화를 위한 교통약자의 횡단속도 추정)

  • Hyung Kyu Kim;Sang Cheal Byun;Yeo Hwan Yoon;Jae Seok Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.87-96
    • /
    • 2022
  • The traffic vulnerable, including elderly pedestrians, have a relatively low walking speed and slow cognitive response time due to reduced physical ability. Although a smart crossing system has been developed and operated to improve problem, it is difficult to operate a signal that reflects the appropriate walking speed for each pedestrian. In this study, a neural network model and a multiple regression model-based traversing speed estimation model were developed using image information collected in an area with a high percentage of traffic vulnerability. to support the provision of optimal walking signals according to real-time traffic weakness. actual traffic data collected from the urban traffic network of Paju-si, Gyeonggi-do were used. The performance of the model was evaluated through seven selected indicators, including correlation coefficient and mean absolute error. The multiple linear regression model had a correlation coefficient of 0.652 and 0.182; the neural network model had a correlation coefficient of 0.823 and 0.105. The neural network model showed higher predictive power.

Comparative study of data augmentation methods for fake audio detection (음성위조 탐지에 있어서 데이터 증강 기법의 성능에 관한 비교 연구)

  • KwanYeol Park;Il-Youp Kwak
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.2
    • /
    • pp.101-114
    • /
    • 2023
  • The data augmentation technique is effectively used to solve the problem of overfitting the model by allowing the training dataset to be viewed from various perspectives. In addition to image augmentation techniques such as rotation, cropping, horizontal flip, and vertical flip, occlusion-based data augmentation methods such as Cutmix and Cutout have been proposed. For models based on speech data, it is possible to use an occlusion-based data-based augmentation technique after converting a 1D speech signal into a 2D spectrogram. In particular, SpecAugment is an occlusion-based augmentation technique for speech spectrograms. In this study, we intend to compare and study data augmentation techniques that can be used in the problem of false-voice detection. Using data from the ASVspoof2017 and ASVspoof2019 competitions held to detect fake audio, a dataset applied with Cutout, Cutmix, and SpecAugment, an occlusion-based data augmentation method, was trained through an LCNN model. All three augmentation techniques, Cutout, Cutmix, and SpecAugment, generally improved the performance of the model. In ASVspoof2017, Cutmix, in ASVspoof2019 LA, Mixup, and in ASVspoof2019 PA, SpecAugment showed the best performance. In addition, increasing the number of masks for SpecAugment helps to improve performance. In conclusion, it is understood that the appropriate augmentation technique differs depending on the situation and data.

Anomaly Detections Model of Aviation System by CNN (합성곱 신경망(CNN)을 활용한 항공 시스템의 이상 탐지 모델 연구)

  • Hyun-Jae Im;Tae-Rim Kim;Jong-Gyu Song;Bum-Su Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.67-74
    • /
    • 2023
  • Recently, Urban Aircraft Mobility (UAM) has been attracting attention as a transportation system of the future, and small drones also play a role in various industries. The failure of various types of aviation systems can lead to crashes, which can result in significant property damage or loss of life. In the defense industry, where aviation systems are widely used, the failure of aviation systems can lead to mission failure. Therefore, this study proposes an anomaly detection model using deep learning technology to detect anomalies in aviation systems to improve the reliability of development and production, and prevent accidents during operation. As training and evaluating data sets, current data from aviation systems in an extremely low-temperature environment was utilized, and a deep learning network was implemented using the convolutional neural network, which is a deep learning technique that is commonly used for image recognition. In an extremely low-temperature environment, various types of failure occurred in the system's internal sensors and components, and singular points in current data were observed. As a result of training and evaluating the model using current data in the case of system failure and normal, it was confirmed that the abnormality was detected with a recall of 98 % or more.

A Study on the Restoration of the Language of the Time for a Historical Drama (역사극 공연을 위한 시대언어 복원의 의미 연구)

  • Pyo, Won-Soub;Park, Yoon-Hee
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.2
    • /
    • pp.133-143
    • /
    • 2019
  • When writing historical dramas, there was an argument that restoring the language of the times was the responsibility of the playwright, but no full-scale research was done. There was no collaborative study between playwrights and Korean Language scholars. So far, many playwrights have considered it the responsibility of Korean Language scholars to discover and restore language. However, it is a medium that can easily meet the public like a play or movie, and it should have a great responsibility for creation. Language changes with time, so restoring the language of the time in plays and scenarios can lead to difficulties in communicating with modern audiences. However, the change of language according to the times means that it captures the social image and fashion of the time Therefore, language restoration in historical dream means that scenes and backgrounds can be described more realistically. Restore of language is not just necessary to improve the creative environment; it should be understood as the responsibility of the artist to meet the ability of the audience to understand the language of the times already learned. The playwright who writes the historical drama should not only learn the grammar of the background era, but also find out the lost pronunciation and the changed vocabulary so that he can use various dialogues.