Recently, Photo editing softwares such as digital cameras, Paintshop Pro, and Photoshop digital can create counterfeit images easily. Various techniques for detection of tamper images or forgery images have been proposed in the literature. A form of digital forgery is copy-move image forgery. Copy-move is one of the forgeries and is used wherever you need to cover a part of the image to add or remove information. Copy-move image forgery refers to copying a specific area of an image itself and pasting it into another area of the same image. The purpose of copy-move image forgery detection is to detect the same or very similar region image within the original image. In this paper, we proposed fast detection of forgery image using four step search based on discrete cosine transform and a four step search algorithm using discrete cosine transform (FSSDCT). The computational complexity of our algorithm reduced 34.23 % than conventional DCT three step search algorithm (DCTTSS).
With the rapid development of the science and technology, it has been becoming more and more convenient to obtain abundant information via the diverse multimedia medium. However, the contents of the multimedia are easily altered with different editing software, and the authenticity and the integrity of multimedia content are under threat. Forensics technology is developed to solve this problem. We focus on reviewing the blind image forensics technologies for copy-move forgery in this survey. Copy-move forgery is one of the most common manners to manipulate images that usually obscure the objects by flat regions or append the objects within the same image. In this paper, two classical models of copy-move forgery are reviewed, and two frameworks of copy-move forgery detection (CMFD) methods are summarized. Then, massive CMFD methods are mainly divided into two types to retrospect the development process of CMFD technologies, including block-based and keypoint-based. Besides, the performance evaluation criterions and the datasets created for evaluating the performance of CMFD methods are also collected in this review. At last, future research directions and conclusions are given to provide beneficial advice for researchers in this field.
스마트 기기와 소형 디스플레이에 사용되는 디지털 영상은 다운스케일링 (Downscaling)된 영상이 사용된다. 본 논문에서는 영상 픽셀값의 경사도에 따른 특징벡터를 이용한 다운스케일링 포저리 (Forgery) 영상 검출 알고리즘을 제안한다. 제안된 알고리즘에서, 원영상의 픽셀값 경사도로부터 자기회귀 (AR: Autoregressive) 계수를 계산한다. 이는 다운스케일링 포저리 영상 검출기의 SVM (Support Vector Machine) 분류를 위한 학습에 사용된다. 제안된 다운스케일링 검출 알고리즘은 동일 10-Dim. 특징벡터의 MFR (Median Filter Residual) 스킴과 686-Dim.의 SPAM (Subtractive Pixel Adjacency Matrix) 스킴과 비교하여 다운스케일링 90% 영상 포저리에서 성능이 우수하며, 평균필터링 ($3{\times}3$) 영상과 미디언필터링 ($3{\times}3$) 영상에서 높은 검출율을 보여 주었다. 특히, 평균필터링과 미디언필터링 영상에서는 성능평가 전체 항목에서 민감도 (Sensitivity; TP: True Positive rate)와 1-특이도 (1-Specificity; FP: False Positive rate)의 AUC (Area Under Curve)가 모두 1에 수렴하여 'Excellent (A)' 등급임을 확인하였다.
In this paper, we proposed a fast detection method of copy-move forgery image based on low frequency coefficients of the DCT coefficients. We proposed a new matching criterion of copy-moved forgery image detection (MCD) using discrete cosine transform. For each $8{\times}8$ pixel block, the DCT transform is calculated. Our algorithm uses low frequency four (DC, 3 AC coefficient) and six coefficients (DC, 5 AC coefficients) of DCT per $8{\times}8$ pixel block. Our algorithm worked block matching for DCT coefficients of the $8{\times}8$ pixel block is slid by one pixel along the image from the upper left corner to the lower right corner. Our algorithm can reduce computational complexity more than conventional copy moved forgery detection algorithms.
Due to the availability of easy-to-use and powerful image editing tools, the authentication of digital images cannot be taken for granted and it gives rise to non-intrusive forgery detection problem because all imaging devices do not embed watermark. Forgery detection plays an important role in this case. In this paper, an effective framework for passive-blind method for copy-move image forgery detection is proposed, based on Gabor filter which is robust to illumination, rotation invariant, robust to scale. For the detection, the suspicious image is selected and Gabor wavelet is applied from whole scale space and whole direction space. We will extract the mean and the standard deviation as the texture features and feature vectors. Finally, a distance is calculated between two textures feature vectors to determine the forgery, and the decision will be made based on that result.
We proposed a fast detection of copy-move image forgery using four step search algorithm in the spatial domain. In the four-step search algorithm, the search area is 21 (-10 ~ +10), and the number of pixels to be scanned is 33. Our algorithm reduced computational complexity more than conventional copy move image forgery methods. The proposed method reduced 92.34 % of computational complexity compare to exhaustive search algorithm.
Copy move frogery(CMF) 위조를 검출하는 기술은 블록(block) 기반 방식과 특징점(keypoint) 기반 방식으로 구분 된다. 블록 기반 방법은 위조 검출 과정에서 조사해야 하는 블록의 수가 많기 때문에 높은 계산 비용이 발생한다. 또한 위조되는 영역이 기하학적 변환을 거친 경우 위조 검출에 실패하는 단점이 있다. 반대로 특징점 기반 접근법은 블록 기반 방식의 단점을 극복 할 순 있지만 CMF 위조가 이미지의 낮은 엔트로피 영역에서 발생하는 경우 검출 할 수 없다는 단점이 존재한다. 따라서 본 논문에서는 특징점 기반 방식과 블록 기반 방식을 융합하여 이미지의 모든 영역에서 CMF 위조를 검출하는 방법을 제안한다. 제안하는 방법은 우선 전체 이미지를 대상으로 특징점 기반 위조 검출을 수행한다. 그 후 위조 검사가 이루어지지 않은 영역을 선별하여 블록 기반 위조 검사를 다시 수행한다. 따라서 제안하는 위조 검출 기술은 이미지의 모든 영역에서 발생하는 CMF 위조를 검출하는 것을 가능하게 해준다. 실험을 통해 제안하는 방법이 기존은 방법보다 우수한 위조 검출 성능을 보이는 것을 확인하였다.
디지털이미지는 인터넷환경에서 수많은 편리함을 제공해준다. 디지털 도서관, Stock Image, 개인 사진, 중요정보 등 수많은 응용에서 디지털 이미지를 필요로 하고 있다. 하지만 디지털 이미지는 파일로 되어있어 조작이 매우 쉽다는 치명적 결점을 가지고 있다. 디지털 이미지 위조는 영상 편집 소프트웨어의 쉬운 접근성과 높은 기능성 덕분에 심각한 문제들로 부상되고 있다. 복사-이동 위조는 영상의 일부를 복사하고 동일 영상 내의 다른 위치에 붙여넣기 하는 동작은 포함하는 가장 간단한 형태의 위조이다. 복사-붙여넣기 위조를 검출하는 많은 방법들이 있지만 대부분 한계점을 가지고 있다. 본 논문에서는 시각적, 비시각적 특성에 기반한 위조를 검출하는 방법들이 비교되었다. 분석의 결과는 위의 두 가지 방법이 서로 보환할 수 있는 장점과 단점이 있음을 보였다. 그러므로 시각적, 비시각적 특징에 기반한 하이브리드 위조 검출 방법을 제안하였다. 실험을 통해 제안한 알고리즘이 각각의 기술의 단독 사용에 비해 향상된 성능을 보임을 증명하였다. 더욱이, 복사-복재 영역을 구분하는 것과 같은 위조 검출 기법에 대해 많은 정보들을 제공한다.
This paper proposes a lightweight deep learning network for detecting an image splicing forgery. The research on image forgery detection using CNN, a deep learning network, and research on detecting and localizing forgery in pixel units are in progress. Among them, CAT-Net, which learns the discrete cosine transform coefficients of images together with images, was released in 2022. The DCT coefficients presented by CAT-Net are combined with the JPEG artifact learning module and the backbone model as pre-learning, and the weights are fixed. The dataset used for pre-training is not included in the public dataset, and the backbone model has a relatively large number of network parameters, which causes overfitting in a small dataset, hindering generalization performance. In this paper, this learning module is designed to learn the characterization depending on the DCT domain in real-time during network training without pre-training. The DCT RRU-Net proposed in this paper is a network that combines RRU-Net which detects forgery by learning only images and JPEG artifact learning module. It is confirmed that the network parameters are less than those of CAT-Net, the detection performance of forgery is better than that of RRU-Net, and the generalization performance for various datasets improves through the network architecture and training method of DCT RRU-Net.
디지털 이미지 위조 탐지는 디지털 포렌식 분야에서 매우 중요한 분야 중 하나이다. 기술의 발전을 통해 위조된 이미지가 자연스럽게 바뀜에 따라 이미지 위조를 감지하기 어렵게 만들었다. 본 논문에서는 디지털 이미지에서 복사 붙여넣기 위조에 대한 수동적 위조 검출을 이용한다. 또한, L0 Norm 기반 LE 연산자를 사용해 복사 붙여넣기 위조를 검출함과 동시에 기존에 존재하던 L2, L1 Norm 기반 LE 연산자를 이용한 위조 검출 정확도를 비교하였다. 제안한 하삼각 윈도우를 적용하고 L2, L1 및 L0 Norm 기반 LE 연산자를 통해 BAG 불일치를 검출하고 위조 검출률을 측정하였다. 검출률의 비교에서 제안한 하삼각 윈도우는 기존의 윈도우 필터보다 BAG 불일치 검출에 강인함을 볼 수 있었다. 또한, 하삼각 윈도우를 쓰는 경우 L2, L1, L0 Norm LE 연산으로 갈수록 이미지 위조 검출의 성능이 점점 높게 측정되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.