• 제목/요약/키워드: Image forgery

검색결과 72건 처리시간 0.023초

Fast Detection of Forgery Image using Discrete Cosine Transform Four Step Search Algorithm

  • Shin, Yong-Dal;Cho, Yong-Suk
    • 한국멀티미디어학회논문지
    • /
    • 제22권5호
    • /
    • pp.527-534
    • /
    • 2019
  • Recently, Photo editing softwares such as digital cameras, Paintshop Pro, and Photoshop digital can create counterfeit images easily. Various techniques for detection of tamper images or forgery images have been proposed in the literature. A form of digital forgery is copy-move image forgery. Copy-move is one of the forgeries and is used wherever you need to cover a part of the image to add or remove information. Copy-move image forgery refers to copying a specific area of an image itself and pasting it into another area of the same image. The purpose of copy-move image forgery detection is to detect the same or very similar region image within the original image. In this paper, we proposed fast detection of forgery image using four step search based on discrete cosine transform and a four step search algorithm using discrete cosine transform (FSSDCT). The computational complexity of our algorithm reduced 34.23 % than conventional DCT three step search algorithm (DCTTSS).

A Survey on Passive Image Copy-Move Forgery Detection

  • Zhang, Zhi;Wang, Chengyou;Zhou, Xiao
    • Journal of Information Processing Systems
    • /
    • 제14권1호
    • /
    • pp.6-31
    • /
    • 2018
  • With the rapid development of the science and technology, it has been becoming more and more convenient to obtain abundant information via the diverse multimedia medium. However, the contents of the multimedia are easily altered with different editing software, and the authenticity and the integrity of multimedia content are under threat. Forensics technology is developed to solve this problem. We focus on reviewing the blind image forensics technologies for copy-move forgery in this survey. Copy-move forgery is one of the most common manners to manipulate images that usually obscure the objects by flat regions or append the objects within the same image. In this paper, two classical models of copy-move forgery are reviewed, and two frameworks of copy-move forgery detection (CMFD) methods are summarized. Then, massive CMFD methods are mainly divided into two types to retrospect the development process of CMFD technologies, including block-based and keypoint-based. Besides, the performance evaluation criterions and the datasets created for evaluating the performance of CMFD methods are also collected in this review. At last, future research directions and conclusions are given to provide beneficial advice for researchers in this field.

디지털 영상 픽셀값의 경사도를 이용한 Downscaling Forgery 검출 (Downscaling Forgery Detection using Pixel Value's Gradients of Digital Image)

  • 이강현
    • 전자공학회논문지
    • /
    • 제53권2호
    • /
    • pp.47-52
    • /
    • 2016
  • 스마트 기기와 소형 디스플레이에 사용되는 디지털 영상은 다운스케일링 (Downscaling)된 영상이 사용된다. 본 논문에서는 영상 픽셀값의 경사도에 따른 특징벡터를 이용한 다운스케일링 포저리 (Forgery) 영상 검출 알고리즘을 제안한다. 제안된 알고리즘에서, 원영상의 픽셀값 경사도로부터 자기회귀 (AR: Autoregressive) 계수를 계산한다. 이는 다운스케일링 포저리 영상 검출기의 SVM (Support Vector Machine) 분류를 위한 학습에 사용된다. 제안된 다운스케일링 검출 알고리즘은 동일 10-Dim. 특징벡터의 MFR (Median Filter Residual) 스킴과 686-Dim.의 SPAM (Subtractive Pixel Adjacency Matrix) 스킴과 비교하여 다운스케일링 90% 영상 포저리에서 성능이 우수하며, 평균필터링 ($3{\times}3$) 영상과 미디언필터링 ($3{\times}3$) 영상에서 높은 검출율을 보여 주었다. 특히, 평균필터링과 미디언필터링 영상에서는 성능평가 전체 항목에서 민감도 (Sensitivity; TP: True Positive rate)와 1-특이도 (1-Specificity; FP: False Positive rate)의 AUC (Area Under Curve)가 모두 1에 수렴하여 'Excellent (A)' 등급임을 확인하였다.

Fast Detection of Copy-Move Forgery Image using DCT

  • Shin, Yong-Dal
    • 한국멀티미디어학회논문지
    • /
    • 제16권4호
    • /
    • pp.411-417
    • /
    • 2013
  • In this paper, we proposed a fast detection method of copy-move forgery image based on low frequency coefficients of the DCT coefficients. We proposed a new matching criterion of copy-moved forgery image detection (MCD) using discrete cosine transform. For each $8{\times}8$ pixel block, the DCT transform is calculated. Our algorithm uses low frequency four (DC, 3 AC coefficient) and six coefficients (DC, 5 AC coefficients) of DCT per $8{\times}8$ pixel block. Our algorithm worked block matching for DCT coefficients of the $8{\times}8$ pixel block is slid by one pixel along the image from the upper left corner to the lower right corner. Our algorithm can reduce computational complexity more than conventional copy moved forgery detection algorithms.

가보 필터를 이용한 이미지 위조 검출 기법 (Image Forgery Detection Using Gabor Filter)

  • ;이경현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 추계학술발표대회
    • /
    • pp.520-522
    • /
    • 2014
  • Due to the availability of easy-to-use and powerful image editing tools, the authentication of digital images cannot be taken for granted and it gives rise to non-intrusive forgery detection problem because all imaging devices do not embed watermark. Forgery detection plays an important role in this case. In this paper, an effective framework for passive-blind method for copy-move image forgery detection is proposed, based on Gabor filter which is robust to illumination, rotation invariant, robust to scale. For the detection, the suspicious image is selected and Gabor wavelet is applied from whole scale space and whole direction space. We will extract the mean and the standard deviation as the texture features and feature vectors. Finally, a distance is calculated between two textures feature vectors to determine the forgery, and the decision will be made based on that result.

Fast Detection of Copy Move Image using Four Step Search Algorithm

  • Shin, Yong-Dal;Cho, Yong-Suk
    • 한국멀티미디어학회논문지
    • /
    • 제21권3호
    • /
    • pp.342-347
    • /
    • 2018
  • We proposed a fast detection of copy-move image forgery using four step search algorithm in the spatial domain. In the four-step search algorithm, the search area is 21 (-10 ~ +10), and the number of pixels to be scanned is 33. Our algorithm reduced computational complexity more than conventional copy move image forgery methods. The proposed method reduced 92.34 % of computational complexity compare to exhaustive search algorithm.

특징점 기반 방식과 블록 기반 방식을 융합한 효율적인 CMF 위조 검출 방법 (Hybrid copy-move-forgery detection algorithm fusing keypoint-based and block-based approaches)

  • 박천수
    • 인터넷정보학회논문지
    • /
    • 제19권4호
    • /
    • pp.7-13
    • /
    • 2018
  • Copy move frogery(CMF) 위조를 검출하는 기술은 블록(block) 기반 방식과 특징점(keypoint) 기반 방식으로 구분 된다. 블록 기반 방법은 위조 검출 과정에서 조사해야 하는 블록의 수가 많기 때문에 높은 계산 비용이 발생한다. 또한 위조되는 영역이 기하학적 변환을 거친 경우 위조 검출에 실패하는 단점이 있다. 반대로 특징점 기반 접근법은 블록 기반 방식의 단점을 극복 할 순 있지만 CMF 위조가 이미지의 낮은 엔트로피 영역에서 발생하는 경우 검출 할 수 없다는 단점이 존재한다. 따라서 본 논문에서는 특징점 기반 방식과 블록 기반 방식을 융합하여 이미지의 모든 영역에서 CMF 위조를 검출하는 방법을 제안한다. 제안하는 방법은 우선 전체 이미지를 대상으로 특징점 기반 위조 검출을 수행한다. 그 후 위조 검사가 이루어지지 않은 영역을 선별하여 블록 기반 위조 검사를 다시 수행한다. 따라서 제안하는 위조 검출 기술은 이미지의 모든 영역에서 발생하는 CMF 위조를 검출하는 것을 가능하게 해준다. 실험을 통해 제안하는 방법이 기존은 방법보다 우수한 위조 검출 성능을 보이는 것을 확인하였다.

Copy-Paste 영상 위조의 하이브리드 검출 알고리즘 (Hybrid Detection Algorithm of Copy-Paste Image Forgery)

  • 최용수;;이달호
    • 디지털콘텐츠학회 논문지
    • /
    • 제16권3호
    • /
    • pp.389-395
    • /
    • 2015
  • 디지털이미지는 인터넷환경에서 수많은 편리함을 제공해준다. 디지털 도서관, Stock Image, 개인 사진, 중요정보 등 수많은 응용에서 디지털 이미지를 필요로 하고 있다. 하지만 디지털 이미지는 파일로 되어있어 조작이 매우 쉽다는 치명적 결점을 가지고 있다. 디지털 이미지 위조는 영상 편집 소프트웨어의 쉬운 접근성과 높은 기능성 덕분에 심각한 문제들로 부상되고 있다. 복사-이동 위조는 영상의 일부를 복사하고 동일 영상 내의 다른 위치에 붙여넣기 하는 동작은 포함하는 가장 간단한 형태의 위조이다. 복사-붙여넣기 위조를 검출하는 많은 방법들이 있지만 대부분 한계점을 가지고 있다. 본 논문에서는 시각적, 비시각적 특성에 기반한 위조를 검출하는 방법들이 비교되었다. 분석의 결과는 위의 두 가지 방법이 서로 보환할 수 있는 장점과 단점이 있음을 보였다. 그러므로 시각적, 비시각적 특징에 기반한 하이브리드 위조 검출 방법을 제안하였다. 실험을 통해 제안한 알고리즘이 각각의 기술의 단독 사용에 비해 향상된 성능을 보임을 증명하였다. 더욱이, 복사-복재 영역을 구분하는 것과 같은 위조 검출 기법에 대해 많은 정보들을 제공한다.

DCT 학습을 융합한 RRU-Net 기반 이미지 스플라이싱 위조 영역 탐지 모델 (A DCT Learning Combined RRU-Net for the Image Splicing Forgery Detection)

  • 서영민;한정우;권희정;이수빈;국중진
    • 반도체디스플레이기술학회지
    • /
    • 제22권1호
    • /
    • pp.11-17
    • /
    • 2023
  • This paper proposes a lightweight deep learning network for detecting an image splicing forgery. The research on image forgery detection using CNN, a deep learning network, and research on detecting and localizing forgery in pixel units are in progress. Among them, CAT-Net, which learns the discrete cosine transform coefficients of images together with images, was released in 2022. The DCT coefficients presented by CAT-Net are combined with the JPEG artifact learning module and the backbone model as pre-learning, and the weights are fixed. The dataset used for pre-training is not included in the public dataset, and the backbone model has a relatively large number of network parameters, which causes overfitting in a small dataset, hindering generalization performance. In this paper, this learning module is designed to learn the characterization depending on the DCT domain in real-time during network training without pre-training. The DCT RRU-Net proposed in this paper is a network that combines RRU-Net which detects forgery by learning only images and JPEG artifact learning module. It is confirmed that the network parameters are less than those of CAT-Net, the detection performance of forgery is better than that of RRU-Net, and the generalization performance for various datasets improves through the network architecture and training method of DCT RRU-Net.

  • PDF

L0 Norm 기반의 LE(Local Effect) 연산자를 이용한 디지털 이미지 위변조 검출 기술 개발 (Development of Digital Image Forgery Detection Method Utilizing LE(Local Effect) Operator based on L0 Norm)

  • 최용수
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제16권2호
    • /
    • pp.153-162
    • /
    • 2020
  • 디지털 이미지 위조 탐지는 디지털 포렌식 분야에서 매우 중요한 분야 중 하나이다. 기술의 발전을 통해 위조된 이미지가 자연스럽게 바뀜에 따라 이미지 위조를 감지하기 어렵게 만들었다. 본 논문에서는 디지털 이미지에서 복사 붙여넣기 위조에 대한 수동적 위조 검출을 이용한다. 또한, L0 Norm 기반 LE 연산자를 사용해 복사 붙여넣기 위조를 검출함과 동시에 기존에 존재하던 L2, L1 Norm 기반 LE 연산자를 이용한 위조 검출 정확도를 비교하였다. 제안한 하삼각 윈도우를 적용하고 L2, L1 및 L0 Norm 기반 LE 연산자를 통해 BAG 불일치를 검출하고 위조 검출률을 측정하였다. 검출률의 비교에서 제안한 하삼각 윈도우는 기존의 윈도우 필터보다 BAG 불일치 검출에 강인함을 볼 수 있었다. 또한, 하삼각 윈도우를 쓰는 경우 L2, L1, L0 Norm LE 연산으로 갈수록 이미지 위조 검출의 성능이 점점 높게 측정되었다.