• 제목/요약/키워드: Image features matching

검색결과 338건 처리시간 0.021초

Image Description and Matching Scheme Using Synthetic Features for Recommendation Service

  • Yang, Won-Keun;Cho, A-Young;Oh, Weon-Geun;Jeong, Dong-Seok
    • ETRI Journal
    • /
    • 제33권4호
    • /
    • pp.589-599
    • /
    • 2011
  • This paper presents an image description and matching scheme using synthetic features for a recommendation service. The recommendation service is an example of smart search because it offers something before a user's request. In the proposed extraction scheme, an image is described by synthesized spatial and statistical features. The spatial feature is designed to increase the discriminability by reflecting delicate variations. The statistical feature is designed to increase the robustness by absorbing small variations. For extracting spatial features, we partition the image into concentric circles and extract four characteristics using a spatial relation. To extract statistical features, we adapt three transforms into the image and compose a 3D histogram as the final statistical feature. The matching schemes are designed hierarchically using the proposed spatial and statistical features. The result shows that each feature is better than the compared algorithms that use spatial or statistical features. Additionally, if we adapt the proposed whole extraction and matching scheme, the overall performance will become 98.44% in terms of the correct search ratio.

영상매칭을 위한 특성정보 추출 (Extraction of Characteristic Information for Image Matching)

  • 이동천;염재홍;김정우;이용욱
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2004년도 춘계학술발표회논문집
    • /
    • pp.171-176
    • /
    • 2004
  • Image matching is fundamental process in photogrammetry and computer vision to identify and to measure corresponding features on the multiple images. Uniqueness of the matching entities and robustness of the algorithm are the key issues that have influence on quality of the matching result. The optimal solution could be obtained by utilizing appropriate matching entities in the first place. In this study, candidate matching points were extracted by interest operator, and an area-based matching method was applied with characteristics of the gray value distribution as the matching entities. The characteristic information is based on the concept of "intrinsic image" (or parameter image). The information was utilized as additional and/or complementary matching entities. Matching on interest points with the characteristic information resulted in high quality of matching because matching windows were created with surrounding pixels of the interest points that contain distinct and unique features. The experiment shows that matching quality and reliability increase by exploiting interest operator, and the characteristic information has potential to be matching entity.

  • PDF

특징창과 특징링크를 이용한 스테레오 특징점의 정합 성능 향상 (Enhancement of Stereo Feature Matching using Feature Windows and Feature Links)

  • 김창일;박순용
    • 정보처리학회논문지B
    • /
    • 제19B권2호
    • /
    • pp.113-122
    • /
    • 2012
  • 스테레오 정합(stereo matching) 기술은 주어진 두 영상에서 동일한 물체의 영상점이 어떤 위치 관계를 가지고 있는지를 결정하는 기술이다. 본 논문에서는 영상 특징점에 대해 스테레오 위치관계를 결정하는 새로운 스테레오 특징점 정합(stereo feature matching) 방법을 제시한다. 제안하는 방법은 주어진 스테레오 영상에서 FAST 추출기를 이용하여 특징점을 추출하고, 특징점 벡터들의 정보들을 내부에 포함하는 특징창(feature window)이라는 공간을 정의하여 스테레오 정합의 성능을 향상한다. 제안하는 방법은 표준 영상에 추출된 특징점들에 대해 특징창을 생성하고, 참조 영상에서 표준 영상의 특징창과 가장 유사한 특징창을 탐색 및 결정한 다음, 결정된 두 개의 특징창 내부의 특징점들의 시차관계는 특징링크(feature link)를 생성하여 시차를 결정한다. 만약, 이 과정에서 시차가 결정되지 않은 특징점들이 있다면, 특징창 내의 결정된 시차 정보를 이용하여 시차 값을 보간한다. 마지막으로, 제안하는 방법의 성능을 검증하기 위해 결과 영상과 정답 영상의 시차를 비교하여 정합 정확성과 수행시간을 비교하였다. 또한, 기존의 특징점 기반 스테레오 정합 방법들과 제안하는 방법의 성능을 비교 및 분석하였다.

특징 강도 정보를 이용한 영상 정합 속도 향상 (Speed-up of Image Matching Using Feature Strength Information)

  • 김태우
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권6호
    • /
    • pp.63-69
    • /
    • 2013
  • 특징 기반 영상 인식 방법은 객체의 특징을 이용하므로 템플릿 정합에 비해 고속으로 수행될 수 있다. 불변 특징 기반의 파노라마 생성은 영상 인식의 한 응용으로서, 두 영상 간의 특징점 정합에 많은 처리 시간이 필요하다. 본 논문에서는 특징 강도 정보를 이용하여 특징점 정합 속도를 향상시키는 방법을 제안한다. SURF 알고리즘으로 특징점들을 추출한 후, 특징 강도 정보를 계산하여 강한 특징점들을 선택하여 특징 정합에 사용한다. 특징 강도가 강한 특징점들은 그렇지 않은 특징점들 보다 더 의미 있다고 볼 수 있다. 실험에서 $320{\times}240$ 크기의 칼라 영상에 대해 제안한 방법은 특징 강도 정보를 사용하지 않았을 때보다 40% 이상 처리 속도의 향상을 보였다.

A Multi-Stage Approach to Secure Digital Image Search over Public Cloud using Speeded-Up Robust Features (SURF) Algorithm

  • AL-Omari, Ahmad H.;Otair, Mohammed A.;Alzwahreh, Bayan N.
    • International Journal of Computer Science & Network Security
    • /
    • 제21권12호
    • /
    • pp.65-74
    • /
    • 2021
  • Digital image processing and retrieving have increasingly become very popular on the Internet and getting more attention from various multimedia fields. That results in additional privacy requirements placed on efficient image matching techniques in various applications. Hence, several searching methods have been developed when confidential images are used in image matching between pairs of security agencies, most of these search methods either limited by its cost or precision. This study proposes a secure and efficient method that preserves image privacy and confidentially between two communicating parties. To retrieve an image, feature vector is extracted from the given query image, and then the similarities with the stored database images features vector are calculated to retrieve the matched images based on an indexing scheme and matching strategy. We used a secure content-based image retrieval features detector algorithm called Speeded-Up Robust Features (SURF) algorithm over public cloud to extract the features and the Honey Encryption algorithm. The purpose of using the encrypted images database is to provide an accurate searching through encrypted documents without needing decryption. Progress in this area helps protect the privacy of sensitive data stored on the cloud. The experimental results (conducted on a well-known image-set) show that the performance of the proposed methodology achieved a noticeable enhancement level in terms of precision, recall, F-Measure, and execution time.

An Algorithm for a pose estimation of a robot using Scale-Invariant feature Transform

  • 이재광;허욱열;김학일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.517-519
    • /
    • 2004
  • This paper describes an approach to estimate a robot pose with an image. The algorithm of pose estimation with an image can be broken down into three stages : extracting scale-invariant features, matching these features and calculating affine invariant. In the first step, the robot mounted mono camera captures environment image. Then feature extraction is executed in a captured image. These extracted features are recorded in a database. In the matching stage, a Random Sample Consensus(RANSAC) method is employed to match these features. After matching these features, the robot pose is estimated with positions of features by calculating affine invariant. This algorithm is implemented and demonstrated by Matlab program.

  • PDF

가상 텍스쳐 영상과 실촬영 영상간 매칭을 위한 특징점 기반 알고리즘 성능 비교 연구 (Study of Feature Based Algorithm Performance Comparison for Image Matching between Virtual Texture Image and Real Image)

  • 이유진;이수암
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1057-1068
    • /
    • 2022
  • 본 논문은 모바일 기반의 실시간 영상 측위 기술 개발을 목표로 사용자가 촬영한 사진과 가상의 텍스쳐 영상 간의 매칭 가능성 확인 연구로 특징점 기반의 매칭 알고리즘의 조합 성능을 비교했다. 특징점 기반의 매칭 알고리즘은 특징점(feature)을 추출하는 과정과 추출된 특징점을 설명하는 서술자(descriptor)를 계산하는 과정, 최종적으로 서로 다른 영상에서 추출된 서술자를 매칭하고, 잘못 매칭된 특징점을 제거하는 과정으로 이루어진다. 이때 매칭 알고리즘 조합을 위해, 특징점을 추출하는 과정과 서술자를 계산하는 과정을 각각 같거나 다르게 조합하여 매칭 성능을 비교하였다. 가상 실내 텍스쳐 영상을 위해 V-World 3D 데스크탑을 활용하였다. 현재 V-World 3D 데스크톱에서는 수직·수평적 돌출부 및 함몰부와 같은 디테일이 보강되었다. 또한, 실제 영상 텍스쳐가 입혀진 레벨로 구축되어 있어, 이를 활용하여 가상 실내 텍스쳐 데이터를 기준영상으로 구성하고, 동일한 위치에서 직접 촬영하여 실험 데이터셋을 구성하였다. 데이터셋 구축 후, 매칭 알고리즘들로 매칭 성공률과 처리 시간을 측정하였고, 이를 바탕으로 매칭 성능 향상을 위해 매칭 알고리즘 조합을 결정하였다. 본 연구에서는 매칭 기법마다 가진 특장점을 기반으로 매칭 알고리즘을 조합하여 구축한 데이터셋에 적용해 적용 가능성을 확인하였고, 추가적으로 회전요소가 고려되었을 때의 성능 비교도 함께 수행하였다. 연구 결과, Scale Invariant Feature Transform (SIFT)의 feature와 descriptor 조합이 가장 매칭 성공률이 좋았지만 처리 소요 시간이 가장 큰 것을 확인할 수 있었고, Features from Accelerated Segment Test (FAST)의 feature와 Oriented FAST and Rotated BRIEF (ORB)의 descriptor 조합의 경우, SIFT-SIFT 조합과 유사한 매칭 성공률을 가지면서 처리 소요 시간도 우수하였다. 나아가, FAST-ORB의 경우, 10°의 회전이 데이터셋에 적용되었을 때에도 매칭 성능이 우세함을 확인하였다. 따라서 종합적으로 가상 텍스쳐 영상과 실영상간 매칭을 위해서 FAST-ORB 조합의 매칭 알고리즘이 적합한 것을 확인할 수 있었다.

Deep Local Multi-level Feature Aggregation Based High-speed Train Image Matching

  • Li, Jun;Li, Xiang;Wei, Yifei;Wang, Xiaojun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권5호
    • /
    • pp.1597-1610
    • /
    • 2022
  • At present, the main method of high-speed train chassis detection is using computer vision technology to extract keypoints from two related chassis images firstly, then matching these keypoints to find the pixel-level correspondence between these two images, finally, detection and other steps are performed. The quality and accuracy of image matching are very important for subsequent defect detection. Current traditional matching methods are difficult to meet the actual requirements for the generalization of complex scenes such as weather, illumination, and seasonal changes. Therefore, it is of great significance to study the high-speed train image matching method based on deep learning. This paper establishes a high-speed train chassis image matching dataset, including random perspective changes and optical distortion, to simulate the changes in the actual working environment of the high-speed rail system as much as possible. This work designs a convolutional neural network to intensively extract keypoints, so as to alleviate the problems of current methods. With multi-level features, on the one hand, the network restores low-level details, thereby improving the localization accuracy of keypoints, on the other hand, the network can generate robust keypoint descriptors. Detailed experiments show the huge improvement of the proposed network over traditional methods.

또다른 접근방식에 의한 스테레오 정합 - 특정 값의 퍼지화 (Another Approach to Stereo Matching - Fuzzification of Feature Values)

  • 김동현;최우영;박래홍
    • 전자공학회논문지B
    • /
    • 제28B권11호
    • /
    • pp.925-933
    • /
    • 1991
  • Conventional stereo matching techniques are based on the assumption that the features representing an object in left and right images have fixed attribute values. But, in fact, such features may take different values due to the practical stereo image formation and the image acquisition error, and thus the conventional techniques tend to result in the in the incorrect matching of features. In this paper, we propose a stereo matching mathod with a possibilistic view which copes with the possible variability of feature values. As a result, this method decreases the number of incorrect matching features when the values of corresponding features are somewhat large. The effectiveness of the proposed method is shown via computer simulation.

  • PDF

Finger Vein Recognition based on Matching Score-Level Fusion of Gabor Features

  • Lu, Yu;Yoon, Sook;Park, Dong Sun
    • 한국통신학회논문지
    • /
    • 제38A권2호
    • /
    • pp.174-182
    • /
    • 2013
  • Most methods for fusion-based finger vein recognition were to fuse different features or matching scores from more than one trait to improve performance. To overcome the shortcomings of "the curse of dimensionality" and additional running time in feature extraction, in this paper, we propose a finger vein recognition technology based on matching score-level fusion of a single trait. To enhance the quality of finger vein image, the contrast-limited adaptive histogram equalization (CLAHE) method is utilized and it improves the local contrast of normalized image after ROI detection. Gabor features are then extracted from eight channels based on a bank of Gabor filters. Instead of using the features for the recognition directly, we analyze the contributions of Gabor feature from each channel and apply a weighted matching score-level fusion rule to get the final matching score, which will be used for the last recognition. Experimental results demonstrate the CLAHE method is effective to enhance the finger vein image quality and the proposed matching score-level fusion shows better recognition performance.