• Title/Summary/Keyword: Image features

Search Result 3,382, Processing Time 0.028 seconds

Target-free vision-based approach for vibration measurement and damage identification of truss bridges

  • Dong Tan;Zhenghao Ding;Jun Li;Hong Hao
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.421-436
    • /
    • 2023
  • This paper presents a vibration displacement measurement and damage identification method for a space truss structure from its vibration videos. Features from Accelerated Segment Test (FAST) algorithm is combined with adaptive threshold strategy to detect the feature points of high quality within the Region of Interest (ROI), around each node of the truss structure. Then these points are tracked by Kanade-Lucas-Tomasi (KLT) algorithm along the video frame sequences to obtain the vibration displacement time histories. For some cases with the image plane not parallel to the truss structural plane, the scale factors cannot be applied directly. Therefore, these videos are processed with homography transformation. After scale factor adaptation, tracking results are expressed in physical units and compared with ground truth data. The main operational frequencies and the corresponding mode shapes are identified by using Subspace Stochastic Identification (SSI) from the obtained vibration displacement responses and compared with ground truth data. Structural damages are quantified by elemental stiffness reductions. A Bayesian inference-based objective function is constructed based on natural frequencies to identify the damage by model updating. The Success-History based Adaptive Differential Evolution with Linear Population Size Reduction (L-SHADE) is applied to minimise the objective function by tuning the damage parameter of each element. The locations and severities of damage in each case are then identified. The accuracy and effectiveness are verified by comparison of the identified results with the ground truth data.

A hierarchical semantic segmentation framework for computer vision-based bridge damage detection

  • Jingxiao Liu;Yujie Wei ;Bingqing Chen;Hae Young Noh
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.325-334
    • /
    • 2023
  • Computer vision-based damage detection enables non-contact, efficient and low-cost bridge health monitoring, which reduces the need for labor-intensive manual inspection or that for a large number of on-site sensing instruments. By leveraging recent semantic segmentation approaches, we can detect regions of critical structural components and identify damages at pixel level on images. However, existing methods perform poorly when detecting small and thin damages (e.g., cracks); the problem is exacerbated by imbalanced samples. To this end, we incorporate domain knowledge to introduce a hierarchical semantic segmentation framework that imposes a hierarchical semantic relationship between component categories and damage types. For instance, certain types of concrete cracks are only present on bridge columns, and therefore the noncolumn region may be masked out when detecting such damages. In this way, the damage detection model focuses on extracting features from relevant structural components and avoid those from irrelevant regions. We also utilize multi-scale augmentation to preserve contextual information of each image, without losing the ability to handle small and/or thin damages. In addition, our framework employs an importance sampling, where images with rare components are sampled more often, to address sample imbalance. We evaluated our framework on a public synthetic dataset that consists of 2,000 railway bridges. Our framework achieves a 0.836 mean intersection over union (IoU) for structural component segmentation and a 0.483 mean IoU for damage segmentation. Our results have in total 5% and 18% improvements for the structural component segmentation and damage segmentation tasks, respectively, compared to the best-performing baseline model.

Deep Learning-based system for plant disease detection and classification (딥러닝 기반 작물 질병 탐지 및 분류 시스템)

  • YuJin Ko;HyunJun Lee;HeeJa Jeong;Li Yu;NamHo Kim
    • Smart Media Journal
    • /
    • v.12 no.7
    • /
    • pp.9-17
    • /
    • 2023
  • Plant diseases and pests affect the growth of various plants, so it is very important to identify pests at an early stage. Although many machine learning (ML) models have already been used for the inspection and classification of plant pests, advances in deep learning (DL), a subset of machine learning, have led to many advances in this field of research. In this study, disease and pest inspection of abnormal crops and maturity classification were performed for normal crops using YOLOX detector and MobileNet classifier. Through this method, various plant pest features can be effectively extracted. For the experiment, image datasets of various resolutions related to strawberries, peppers, and tomatoes were prepared and used for plant pest classification. According to the experimental results, it was confirmed that the average test accuracy was 84% and the maturity classification accuracy was 83.91% in images with complex background conditions. This model was able to effectively detect 6 diseases of 3 plants and classify the maturity of each plant in natural conditions.

Ideal Nasal Preferences: A Quantitative Investigation with 3D Imaging in the Iranian Population

  • Kiarash Tavakoli;Amir K. Sazgar;Arman Hasanzade;Amir A. Sazgar
    • Archives of Plastic Surgery
    • /
    • v.50 no.4
    • /
    • pp.340-347
    • /
    • 2023
  • Background Though in facial plastic surgery, the ideal nasal characteristics are defined by average European-American facial features known as neoclassical cannons, many ethnicities do not perceive these characteristics as suitable. Methods To investigate the preferences for nasofrontal angle, nasolabial angle, dorsal height, alar width, and nasal tip projection, manipulated pictures of one male and one female model were shown to 203 volunteer patients from a tertiary university hospital's facial plastic clinic. Results The most aesthetically preferred nasofrontal angles were 137.64 ± 4.20 degrees for males and 133.55 ± 4.53 degrees for females. Acute nasofrontal angles were more desirable in participants aged 25 to 44. The most preferred nasolabial angles were 107.56 ± 5.20 degrees and 98.92 ± 4.88 degrees, respectively. Volunteers aged 19 to 24 preferred more acute male nasolabial angles. A straight dorsum was the most desirable in both genders (0.03 ± 0.78 and 0.26 ± 0.75 mm, respectively). The ideal male and female alar widths were -0.51 ± 2.26 and -1.09 ± 2.18 mm, respectively. More 45- to 64-year-old volunteers preferred alar widths equal to intercanthal distance. The ideal female and male tip projections were 0.57 ± 0.01 and 0.56 ± 0.01, respectively. Conclusion Results indicate that the general Iranian patients prefer thinner female noses with wider nasofrontal angles for both genders. However, the ideal nasolabial angles, dorsal heights, and tip projections were consistent with the neoclassical cannons. Besides ethnic differences, the trend of nasal beauty is also affected by gender, age, and prior history of aesthetic surgery.

The radiation shielding proficiency and hyperspectral-based spatial distribution of lateritic terrain mapping in Irikkur block, Kannur, Kerala

  • S. Arivazhagan;K.A. Naseer;K.A. Mahmoud;N.K. Libeesh;K.V. Arun Kumar;K.ChV. Naga Kumar;M.I. Sayyed;Mohammed S. Alqahtani;E. El Shiekh;Mayeen Uddin Khandaker
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3268-3276
    • /
    • 2023
  • The practice of identifying the potential zones for mineral exploration in a speedy and low-cost method includes the use of satellite imagery analysis as a part of remote sensing techniques. It is challenging to explore the iron mineralization of a region through conventional methods which are a time-consuming process. The current study utilizes the Hyperion satellite imagery for mapping the iron mineralization and associated geological features in the Irikkur region, Kannur, Kerala. Along with the remote sensing results, the field study and laboratory-based analysis were conducted to retrieve the ground truth point and geochemical proportion to verify the iron ore mineralization. The MC simulation showed for shielding properties indicate an increase in the linear attenuation coefficient with raising the Fe2O3+SiO2 concentrations in the investigated rocks where it is varied at 0.662 MeV in the range 0.190 cm-1 - 0.222 cm-1 with rising the Fe2O3+SiO2 content from 57.86 wt% to 71.15 wt%. The analysis also revealed that when the γ-ray energy increased from 0.221 MeV to 2.506 MeV, sample 1 had the largest linear attenuation coefficient, ranging from 9.33 cm1 to 0.12 cm-1. Charnockite rocks were found to have exceptional shielding qualities, making them an excellent natural choice for radiation shielding applications.

An Embedded Text Index System for Mass Flash Memory (대용량 플래시 메모리를 위한 임베디드 텍스트 인덱스 시스템)

  • Yun, Sang-Hun;Cho, Haeng-Rae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.6
    • /
    • pp.1-10
    • /
    • 2009
  • Flash memory has the advantages of nonvolatile, low power consumption, light weight, and high endurance. This enables the flash memory to be utilized as a storage of mobile computing device such as PMP(Portable Multimedia Player). Potable device with a mass flash memory can store various multimedia data such as video, audio, or image. Typical index systems for mobile computer are inefficient to search a form of text like lyric or title. In this paper, we propose a new text index system, named EMTEX(Embedded Text Index). EMTEX has the following salient features. First, it uses a compression algorithm for embedded system. Second, if a new insert or delete operation is executed on the base table. EMTEX updates the text index immediately. Third, EMTEX considers the characteristics of flash memory to design insert, delete, and rebuild operations on the text index. Finally, EMTEX is executed as an upper layer of DBMS. Therefore, it is independent of the underlying DBMS. We evaluate the performance of EMTEX. The Experiment results show that EMTEX can outperform th conventional index systems such as Oracle Text and FT3.

Hierarchical Flow-Based Anomaly Detection Model for Motor Gearbox Defect Detection

  • Younghwa Lee;Il-Sik Chang;Suseong Oh;Youngjin Nam;Youngteuk Chae;Geonyoung Choi;Gooman Park
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1516-1529
    • /
    • 2023
  • In this paper, a motor gearbox fault-detection system based on a hierarchical flow-based model is proposed. The proposed system is used for the anomaly detection of a motion sound-based actuator module. The proposed flow-based model, which is a generative model, learns by directly modeling a data distribution function. As the objective function is the maximum likelihood value of the input data, the training is stable and simple to use for anomaly detection. The operation sound of a car's side-view mirror motor is converted into a Mel-spectrogram image, consisting of a folding signal and an unfolding signal, and used as training data in this experiment. The proposed system is composed of an encoder and a decoder. The data extracted from the layer of the pretrained feature extractor are used as the decoder input data in the encoder. This information is used in the decoder by performing an interlayer cross-scale convolution operation. The experimental results indicate that the context information of various dimensions extracted from the interlayer hierarchical data improves the defect detection accuracy. This paper is notable because it uses acoustic data and a normalizing flow model to detect outliers based on the features of experimental data.

Classification of Fiber Tracts Changed by Nerve Injury and Electrical Brain Stimulation Using Machine Learning Algorithm in the Rat Brain (신경 손상과 전기 뇌 자극에 의한 흰쥐의 뇌 섬유 경로 변화에 대한 기계학습 판별)

  • Sohn, Jin-Hun;Eum, Young-Ji;Cheong, Chaejoon;Cha, Myeounghoon;Lee, Bae Hwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.701-702
    • /
    • 2021
  • The purpose of the study was to identify fiber changes induced by electrical stimulation of a certain neural substrate in the rat brain. In the stimulation group, the peripheral nerve was injured and the brain area associated to inhibit sensory information was electrically stimulated. There were sham and sham stimulation groups as controls. Then high-field diffusion tensor imaging (DTI) was acquired. 35 features were taken from the DTI measures from 7 different brain pathways. To compare the efficacy of the classification for 3 animal groups, the linear regression analysis (LDA) and the machine learning technique (MLP) were applied. It was found that the testing accuracy by MLP was about 77%, but that of accuracy by LDA was much higher than MLP. In conclusion, machine learning algorithm could be used to identify and predict the changes of the brain white matter in some situations. The limits of this study will be discussed.

  • PDF

A Study on the Types of Virtual Influencers in China Using Q Methodology

  • LILI;Jong-Yoon Lee;ShanShan LIU;Jang Sun Hong
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.2
    • /
    • pp.152-161
    • /
    • 2023
  • Modern people live a life connected with the real world and the virtual world by relying on the new media of enterprises and social consumption led by innovative technologies. In this environment, virtual influencers actively communicate with consumers and build relationships through social media, which is a new marketing tool that has attracted widespread attention. From a business perspective, it is necessary to have a solid understanding of this phenomenon, and then explore communication strategies to effectively develop virtual influencers. To investigate followers' preference for virtual influencers, this study employs the Q-method, which studies human subjective attributes, an empirical research effort to uncover complex issues in human subjectivity. To determine the factors that trigger people's voluntary and active practice and the preference degree of virtual influencers, the Q method is implemented to examine human subjectivity, thoughts and attitudes. According to the results of this study, virtual influencers are a new group of idols full of vitality. The interviews found that there are still many virtual influencers who do not know about followers, but each type can be clearly understood through the intuitive understanding of the interviewees. Divided out, type 1 one egoideal virtual influencers aim to represent an idealized version of the creator or target audience. Embodies ideal physical characteristics, personality or lifestyle desired by the audience. Type 2 is charismatic and attractive, and has the characteristics of most virtual influencers. It is suggested that it can be developed into a potential type, doing brand cooperation, and content production on social media platforms. Type 3: Game animation, derived from the image of characters in games or comics, with stylized features and energetic personalities, which can be integrated into games or entertainment experiences. Type 4 development potential type is the most successful type among virtual imagers, and it is also the purpose of marketing virtual influencers. It is essential that brand endorsement on social media platforms, integrated marketing, and driving advertising traffic. It is recommended to improve production technology to reduce investment costs.

Analysis of the Emotional experience design types of iPhone users - Focused on Q-methodology - (아이폰 사용자의 감성경험디자인 유형 분석 - Q 방법론을 중심으로 -)

  • Lee, Youngju;Lee, Hoeun
    • Journal of Communication Design
    • /
    • v.38
    • /
    • pp.312-320
    • /
    • 2012
  • IPhone users who prefer to study the sensitivity of the subjective aspects of experience design elements, aiming to clarify and subjectivity, Q methodology for the study were able to detect four types through. The first type of usability on the iPhone to pursue the type of individuals who have sufficient understanding of sayongjeok behavior based on the use of features, ease of understanding, the physical sense, usability is important to all who were able to see that consist of: The second types of aesthetics to pursue the type of visual information of the product by the intuitive and subjective aesthetic impression was important to distinguish your type. The third types of discrimination to pursue the type of emotional self-image or self-owned products, to convey a message to anyone seriously here, and the fourth type is the type of active and absolute preference for the iPhone that has been identified as the type of .